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ABSTRACT. Optimizing radio frequency (rf ) pulses is of interest in both Mag-
netic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy. Recent
research has focussed on reducing rf energy for imaging, and improving excita-
tion profile uniformity for spectroscopy. This paper summarizes the different ap-
proaches used to date, and presents an approach using continuous optimization
that utilizes second derivative information of the objective function, with two ex-
amples of novel, sub-millisecond pulse designs: an energy-constrained pulse for
steady state imaging, and a linear-phase, broadband 90 degree pulse for NMR.

The benefits of using second derivatives of the objective function are examined,
and a method is presented for efficient computation.

All optimization is done using the open-source optimization package IPOPT.
Computationally efficient integration of the Bloch equations and derivative calcu-
lations are performed using code symbolically generated by Maple.

Keywords:radio-frequency pulse; magnetic resonance imaging; optimal control; IPOPT;
SAR; specific absorption rate; slice selection; broadband pulse

1. INTRODUCTION

Both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR)
Spectroscopy measure chemical properties and geometric structure by exciting nu-
clear spins into higher-energy states and measuring the resulting magnetic signal.

Both techniques use magnetic fields oscillating in resonance with nuclei for exci-
tation. The nuclear spins can be modelled using quantum mechanics, with a good
classical approximation, known as the Bloch equations. At technically feasible
field strengths, the oscillations are in the radio-frequency range, and the excitation
waveforms are called RF pulses.

The classical approximation is sufficient for understanding MRI, and sufficient
for designing common excitation pulses in NMR. As MRI goes to higher fields,
the energy required by a given pulse increases, to the point where patient comfort
and safety concerns limit the energy and hence throughput of the examination.
In NMR, the span of the resonant frequencies of different nuclei increases with
field strength. This is desirable because it makes it easier to separate signals from
different nuclei.

It is thus useful to implement a framework that can take into account goals
for excitation profile, bandwidth, and total and peak pulse energy. The examples
given in this paper are targeted towards ultra-short (temporally) pulses, in the sub
millisecond regime.
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Several different alternatives are currently available for designing rf pulses, as
sketched below. Since the problem is non-convex, constrained, and involves solv-
ing a family of systems of ordinary differential equations—the Bloch equations—it
is not surprising that of the many approaches, none has been completely success-
ful, with each method addressing different design criteria.

2. RELATED WORK / ALTERNATIVE DESIGN METHODS

Inverse scattering is a method of transforming algebraic data (e.g. polynomi-
als) into solutions of differential equations. With forward and inverse transforms
it is possible to quickly design pulses with discretized responses. Shinnar and
Le Roux introduced this method to MR [Pauly et al. 1991], and it is by-far the most
common method of designing pulses in MRI. This approach has been generalized
by making the inverse scattering explicit, see [Magland 2005] for a recent example.

These methods are very fast, but cannot effectively address constraints on rf pulse
amplitude, or situations in which the exact excitation profile is not important, only
some properties of it. The first is a result of not treating the discretized pulse en-
velope as the design variable.

In both imaging and spectroscopy, hardware limits on total and instantaneous
rf power are imposed in order to prevent meltdown of amplifiers and probes, and
to limit energy deposition in the object being scanned. The VERSE pulse design
concept [Conolly et al. 1986a] modifies pulses designed using other means (prin-
cipally SLR) to reduce power by scaling/dilating portions of the rf and accompa-
nying gradient waveform to produce the same excitation using less energy or less
time. This approach has been used successfully to produce very short pulses for
steady state imaging [Hargreaves et al. 2004].

The first use of basic optimization (in the low-energy limit) was made in 1973
[Tomlinson and Hill 1973]. Numerical and analytical work continued in this direc-
tion even prior to a relatively complete formulation of the optimization problem
in MRI in 1986 by Conolly [Conolly et al. 1986b].

For some problems, quite a bit of physical insight, combined with other inverse-
scattering or compositional methods are required to find a useful starting point
for a local optimizer. Most approaches involve pattern search or gradient-based
methods [Hargreaves et al. 2004, Skinner et al. 2004], and approximate numerical
integration of the systems of Bloch equations. Not surprisingly, significant numer-
ical/computational issues arise in the form of unacceptable execution times and
convergence bottlenecks.

Previous formulations of this problem for the optimal control package SOCS(see
[Betts 2001]), resulted in interesting waveform designs when starting with a zero
initial waveform [Anand et al. 2006], but this general approach very quickly reached
memory and computation limits.

One approach to reducing numerical cost is to use a mathematical description
of the solution space adapted to the problem. This increases the fidelity and res-
olution of the solution while keeping the cost constrained. Chebyshev polynomi-
als have been used to approximate rf waveforms, leading to better convergence
[Ulloa et al. 2004], using SLR pulses as starting points.
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By far the most successful approach in the design of constrained pulses involves
setting up a series of constraints for the approximate integration of the Bloch equa-
tions at time points corresponding to a discretization of the control waveform,
and then explicitly integrating both the magnetization (solution of the Bloch equa-
tions) and the Lagrange multipliers [Skinner et al. 2004, Skinner et al. 2003]. The
approach of Skinner et al. and the approach we will present are more efficient than
the aforementioned, as they exploit the structure of the problem. At this time, it is
not clear how the two approaches could be combined.

3. PROBLEM

The variables bi ∈ R determine piecewise constant functions b(t). In MRI,
these are the common design variables. It is also possible to co-design gradient
waveforms, see [Conolly et al. 1986b, Anand et al. 2006], but for very short pulses,
there is no benefit, so we omit it here. In NMR, pulses are almost always complex
valued. This introduces additional freedom, but also increases the number of (real)
design variables, and introduces quadratic constraints.

To define the objective we need to define intermediate variables for the final
magnetization which would result from the current rf pulse b(t), M(s, t) ∈ R3, for
discrete values of s determined by the particular problem and t by the choice of
discretization for the control waveform. The objective is then to minimize

(1) F(b) = ∑
s∈S

∣∣M(s, T)− Mtarget(T)
∣∣2 ,

at the end of the pulse (time T), where the sum is taken over a finite set of fre-
quency offsets (corresponding to slice positions in the imaging case). There are no
constraints on S, such as equal density or equal coverage. In different applications,
we are free to choose the most appropriate set S.

The magnetization Bloch equations:

(2)
dM
dt

= M× B +
1
T1

(M0 − Mz)−
1
T2

(M− Mz).

where

(3) B =




b(t)

0
sG(t)



 ,

and G(t) is a constant in the NMR case or a pre-determined piecewise-constant
gradient profile in the MRI case, which for implementation issues is usually also a
constant, and will be a constant in all examples in this paper. In the complex case,
B = ($b(t),%b(t), sG(t)).

The constants T1 and T2 are relaxation times, and for all the pulses in this paper
are large enough that they can be ignored.
Path Constraints. The controls are constrained by

|b(t)| < Mpoint, ∀t ∈ U.(4)

which correspond to safe operating ranges for the amplifiers.
NMR and MRI experiments are composed of multiple pulses. To simplify the

exposition of this paper, we only consider the design of so-called excitation pulses,
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that is, pulses designed to operate on an equilibrium initial magnetization

M(s, 0) =




0
0
1



 , ∀s ∈ S.(5)

3.1. Problem. To summarize we want to solve

min ∑
s∈S

∣∣M(s, T)− Mtarget(T)
∣∣2 ,(6)

subject to
∫

t∈[0,T]
b(t)2dt < Mtotal,(7)

|b(t)| < Mpoint,(8)
M solves Bloch equations (2).(9)

4. EXACT INTEGRATION, GRADIENTS

The key to efficiently solving this problem is that given piecewise-constant con-
trols, the Bloch equations can be analytically integrated. Moreover, they can be in-
tegrated for a basis of initial conditions at the start of a piecewise constant segment
of b(t) to another basis at the end of the segment. Let the segments be indexed by
i = 0, 1, 2, ..., and let the linear transformation given by integrating the basis of
initial conditions over interval i be Ei ∈ GL(R3).

Using this notation, the final magnetization is

(10) M(T) = ET−1ET−2 · · · Ei · · · E2E1E0M(0),

where we abuse notation and use T for the number of intervals, and the final time.
The only transformation which depends on on b(t) and G(t) in interval i is Ei, so
the first and second derivatives are

∂M(T)
∂bi

= ET−1ET−2 · · ·
∂Ei
∂bi

· · · E2E1E0M(0),(11)

∂2M(T)
∂bi ∂bj

=





ET−1ET−2 · · · ∂Ei

∂bi
· · · Es · · · ∂Ei

∂bj
· · · E0M(0) i < j

ET−1ET−2 · · · ∂2Ei
∂b2

i
· · · E2E1E0M(0) i = j,

(12)

where we can assume, without loss of generality, that i ≤ j. So calculating one
partial derivatives of M(T) with respect to a control using (11) requires NT matrix
products, just as the calculation of M(T). But many of the products are repeated.

By calculating

Ui = ET−1ET−2 · · · Ei+1Ei ∈ GL(R3),(13)

Vi = U(t)−1,(14)

Wi = Ei−1 · · · E2E1E0M(0) ∈ R3, and(15)

once for all t, starting from the left for U and V and the right for W, we can do this
using NT matrix-vector products and 2NT matrix-matrix products. Calculate all
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the partial derivatives in the gradient as
∂M(T)

∂bi
= U(t + 1)

∂Ei
∂bi

Wi,(16)

∂2M(T)
∂b2

i
= U(t + 1)

∂2Ei
∂b2

i
Wi, and(17)

∂2M(T)
∂bi ∂bj

= U(t + 1)
∂Ei
∂bi

ViUj+1
∂Ei
∂bj

Wi.(18)

(With similar expressions for the derivatives with respect to the gradient wave-
form, if it is not held constant.) This can be performed efficiently by abutting two
loops. The first loop goes backward in time, calculating Ei, E−1

i , the partial deriva-
tives of Ei, Ui, and Vi. The second goes forward in time, calculating Mi and Wi,
and calculating and storing the products of Wi and the two partial derivatives.

The calculation of Et, its inverse and partials involves many repeated calcu-
lations (including expensive sine and cosine evaluations). Automatic differenti-
ation1 and symbolic code generation can both reduce the effort required to pro-
duce such code. Symbolic code generation can significantly reduce the redundant
computation via common sub expression identification at the symbolic level, see
[Anand et al. 2005)] for an application to the analysis of time series with exponen-
tial components (e.g., free induction decays in NMR). Symbolic code generation
allows better control over access to memory, it is also much simpler than writing
the code in the first place, if you have access to either Maple or Mathematica. It
works very well for systems based on the Bloch equations; for more complicated
systems of equations, e.g., coupled spin systems, it is not always able to integrate
over finite time steps [Anand et al. 2006], but for short pulses, the larger systems
can be decomposed into Bloch equation blocks.

5. METHODS

Maple PDEtools and codegen packages were used for the analytic solution of
the objective function, which was then converted to C code for fast execution.
The code is available by contacting the first author, and quite readable to people
familiar with Maple.

The peak rf-power limit for the MRI pulse designs was determined empirically
in all cases by designing a pulse for a specified flip angle and trying to image a
fixed, vendor-supplied phantom. Since the scan console normally adjusts rf pulses
and gradients just before imaging (including the effect of calibrating the rf power
to flip angle ratio for the object/antenna combination being imaged) reported scan
times and flip angles were checked before and after scanning.

To verify the pulse designs, gradient echo volumes were collected on a GE 3.0T
short-bore Excite-II scanner (GE Healthcare, Milwaukee, WI, USA), and compared
with images acquired using manufacturer-supplied 1ms excitation pulses.

The optimization was performed using the open-source nonlinear constrained
optimization software, Interior Point OPTimizer (IPOPT), [Wächter 2002].

For the examples in this paper, time steps for discretization of b(t) were taken
to be 2µs for MRI, and 0.5µs for NMR. Optimization time ranged from seconds to

1For a list of tools for using automatic differentiation and a list of introductory and research publi-
cations, see http://www.autodiff.org.



6 Anand, Curtis

minutes on a 2.16GHz Core2Duo MacBook Pro, with roughly half the time spent in
the Maple-generated derivative and function evaluation, and half in the optimizer.
For test purposes, we used IPOPT to optimize different pulse design problems,
with and without the second derivative information. Without second derivatives,
the design times could reach several hours for similar levels of convergence.

6. INTEGRATION INTO OPTIMIZER

Before integrating the derivative calculations into an IPOPT call-back function,
the Maple-generated code was tested for correctness and performance. Maple in-
tegration code was slightly faster than hand-optimized C code, and calculating
the gradient at the same time was less than four times the cost of the integration
alone over a wide range of problem sizes. Calculating the Hessian scaled quadrat-
ically with problem size, as expected. Constructing an IPOPT call-back function
involves: choosing an order for the variables, setting up index arrays, and using
the chain rule to calculate two derivatives given the derivatives of M(T), the final
magnetization on each controlled offset frequency s ∈ S.

7. RESULTS

MRI: Limited Peak and Total Energy. Two design problems are reported:
The first problem is to design a very short (100µs) broad-band excitation pulse

for imaging, alongside a maximum slice gradient. Short pulses are of importance
in imaging for many reasons, in this case for increasing duty cycles and reducing
energy deposition. Only the target in-slice magnetization (slice thickness 32cm)
is required to be uniform, with total energy constrained to be 1/2 of what a com-
parable Gaussian pulse would require. It is unusual to specify a large gradient
for use with a wide slice excitation, but this is useful in connection with high-
efficiency k-space sampling [Anand et al. 2007]. A flip angle of 9 degrees was cho-
sen to demonstrate constrained optimization, without triggering dilation of the
rf pulse by the scan console. To prevent numerical problems, a constant nonzero
(10−6 of maximum) numerical value was used as an initial b(t).

Optimization produced a sinc-like pulse bounded in the centre by the peak
power constraint, and bounded overall by the total instantaneous power. For com-
parison purposes, the pulse in Fig. 1 is compared with the narrowest square-wave
pulse with a 9 degree flip at the centre of the slice, and peak power under the limit.
The shows the pulse waveforms, and the right the slice profile, including slice po-
sitions beyond the designed 16cm radius. Since the profile is symmetric, only one
side is shown.

In Fig. 2 volume cross sections of the acquired phantom data were generated,
showing the slice direction along the vertical axis. The uniformity is similar, with
the optimized pulse exhibiting aliasing on the top and bottom of the phantom
outside the reconstructed field of view. This shows that it is a broad-band pulse.
NMR: With and Without Second Derivatives. In the second example, a linear-
phase broadband π/2 excitation pulse for NMR is designed, using machine pa-
rameters (resonance offset ±20kHz, peak rf power of 17.5kHz, and rf power scal-
ing errors of ±5%) from [Skinner et al. 2004] but only 125µs length pulses.

Two ±20kHz linear-phase broadband pulses were designed using IPOPT with
identical constraints, one using first derivatives and pseudo-Hessians estimated
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FIGURE 1. Left: Pulse profiles for optimized and square pulse.
Right: Simulated slice profiles.

FIGURE 2. Left: Multi-planar reconstruction of the optimized
pulse. Right: Multi-planar reconstruction of a standard 1ms pulse.

by IPOPT, and one with the full Hessian of second derivatives calculated as de-
scribed above. Fig. 3 shows the objective function (in this case measuring essen-
tially the least-squares deviation from the desired linear-phase excitation profile,
since minimizing energy was given a very low weight), and the resulting pulse.
The current software supports only real-valued pulses (no complex phase), so only
the real-part is shown. The reduction of the objective shows that after 20 itera-
tions, the optimization with second derivatives has found a high-quality pulse.
The solid line ends at 250 iterations when numerical criteria used by IPOPT de-
tect convergence. The dotted line falls much more slowly to a good value, fre-
quently increases, indicating a failure to find improvements in the pulse which
do not violate constraints, and ends after 400 iterations when IPOPT reports con-
straint violations which cannot be remedied. Both pulses are symmetric, which
can be expected because the desired excitation profile is conjugate-symmetric, but
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FIGURE 3. Left: Objective as a function of iteration, showing
much faster convergence when second derivatives are used.
Right: Pulse profiles. The pulse generated with full Hessian in-
formation reaches a higher energy (energy is unconstrained) but
spends much more time at peak. Oscillations are within amplifier
slew limits.
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FIGURE 4. Left: Inset: Excitation profile over frequency range (0
to 20kHz). Full: Same profile at full scale showing falloff outside
of design range. Right: Deviation from linearity of resulting exci-
tation phase across the design range. In all cases we see the full
Hessian perform better.

the full-Hessian design does use much more of the available peak energy. As a
result, the excitation response in Fig. 4 is much closer to the ideal. The left hand
plot shows the magnitude of the x− y component with a scaled version inset. The
right hand plot shows very low deviation from the desired linear phase.

Both relaxing the overall energy limit and reducing the width of the pulse sam-
pling from 2µs to 0.5µs combine to allow designs much closer to the desired profile
even at 90 degrees versus the 9 degree low-energy pulse designed for MRI.

8. DISCUSSION

In addition to two novel pulse designs which solve current problems in NMR
and MRI, we have shown that using symbolic code generation leads to a compact
optimization problem whose solution is easily within reach of the open-source



Pulse Design for MRI and NMR 9

solver IPOPT. Having exact second derivatives significantly improves performance,
and will allow this approach to scale to much larger problem sizes. One draw-back
of using IPOPT is that sparse matrix arithmetic is always used, even though our
Hessians are dense.

In addition to designing and testing variations of these pulses, we are exploring
more involved pulse designs which are far more sensitive to good starting points
(inversion pulses, pulse trains, etc.), as well as complex-valued pulse designs.
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