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Abstract. Denote by kt(G) the number of cliques of order t in a graph G having n vertices.
Let kt(n) = min{kt(G) + kt(G)} where G denotes the complement of G. Let ct(n) = kt(n)/

(
n
t

)
and ct be the limit of ct(n) for n going to infinity. A 1962 conjecture of Erdős stating that

ct = 21−
(
t
2

)
was disproved by Thomason in 1989 for all t ≥ 4. Tighter counterexamples have

been constructed by Jagger, Šťov́ıček and Thomason in 1996, by Thomason for t ≤ 6 in 1997,
and by Franek for t = 6 in 2002. We investigate a computational framework to search for tighter
upper bounds for small t and provide the following improved upper bounds for t = 6, 7 and 8:

c6 ≤ 0.7445 × 21−
(
6
2

)
, c7 ≤ 0.6869 × 21−

(
7
2

)
, and c8 ≤ 0.7002 × 21−

(
8
2

)
. The constructions are

based on a large but highly regular variant of Cayley graphs for which the number of cliques and

cocliques can be expressed in closed form. Note that if we consider the quantity et = 2

(
t
2

)
−1ct,

the new upper bound of 0.687 for e7 is the first bound for any et smaller than the lower bound
of 0.695 for e4 due to Giraud in 1979.
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1 Introduction

Denote by kt(G) the number of cliques of order t in a graph G having n vertices. Let kt(n) =
min{kt(G)+kt(G)} where G denotes the complement of G. The cliques in G are referred to as
cocliques. If we want to be specific about their sizes, we talk of t-cliques and t-cocliques. Let
ct(n) = kt(n)/

(
n
t

)
and ct = limn→∞ ct(n). Since we can view G and G as a 2-colouring of the

edges of the complete graph Kn, ct(n) denotes the minimum proportion of monochromatic
t-cliques and t-cocliques for all 2-colourings of the edges of Kn.

A conjecture of Erdős related to Ramsey’s Theorem [2], states that ct = 21−
(
t
2

)
. The con-

jecture is clearly true for t = 2, and using Goodman’s approach [8], one can show that the
conjecture holds for t = 3. One of the motivations behind the conjecture is the fact that
the conjecture holds for any t for random graphs. Erdős and Moon [3] showed that a mod-
ified conjecture for complete bipartite subgraphs of bipartite graphs is true. Sidorenko [11]
showed that a modified conjecture for cycles is true, but not true for certain incomplete sub-
graphs. Franek and Rödl [5] showed that the original conjecture for t = 4 is true for nearly
quasirandom, and hence quasirandom graphs.
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Thomason [12] disproved the conjecture for t ≥ 4 by exhibiting constructions achieving low
numbers of cliques and cocliques. Thomason’s upper bounds from [12] were: c4 ≤ 0.976 ×

21−
(
4
2

)
, c5 ≤ 0.906 × 21−

(
5
2

)
, and ct ≤ 0.936 × 21−

(
t
2

)
for t ≥ 6. These bounds were further

improved in [13] to c4 ≤ 0.9693 × 21−
(
4
2

)
and c5 ≤ 0.8801 × 21−

(
5
2

)
, in [4] to c6 ≤ 0.7446 ×

21−
(
6
2

)
, and in [9] to ct ≤ 0.835× 21−

(
t
2

)
for t ≥ 7. The construction used in [4] to bound c6

is based on the approach used by Franek and Rödl [6], who tied the best upper bound for

c4. It improves the best upper bound for t = 7 to c7 ≤ 0.7156 × 21−
(
7
2

)
. This bound for c7

was mentioned in a referee report but never formally put forward.

In this paper we investigate a computational framework to search for tighter upper bounds

for small t and give improved upper bounds for t = 6, 7 and 8 : c6 ≤ 0.74444 × 21−
(
6
2

)
,

c7 ≤ 0.6869× 21−
(
7
2

)
, and c8 ≤ 0.7002× 21−

(
8
2

)
.

Concerning the lower bound, see Conlon [1] for a recent improvement over Erdős’s original

application of Ramsey’s Theorem, and Giraud [7] who showed that c4 ≥ 0.695×21−
(
4
2

)
. Note

that if we consider the quantity et = 2

(
t
2

)
−1ct, the new upper bound for e7 is in fact smaller

than Giraud’s lower bound for e4; this is the first such upper bound for any et.

2 Constructing Counterexamples

In order to improve the upper bound for ct for small t, we follow the approach used in [4,
6] and work with graphs for which the number of cliques and cocliques can be expressed in
closed form. This allows a viable search among them for the ones that exhibit the lowest
numbers of cliques and cocliques.

For a positive integerX and F ⊆ {1, 2, . . . , X}, we consider the graphGX,F whose vertices are
all 2X subsets of {0, 1, . . . , X−1}, and two subsets xi and xj of {0, 1, . . . , X−1} are connected
by an edge if and only if |xi4xj | ∈ F , where4 denotes the operation of symmetric difference.
We clearly have GX,F = GX,F where F = {1, 2, . . . , X} − F .

Since it would be too complicated to count cliques in GX,F , we introduce the notion of (X,F )-
tuples and count the (X,F )-tuples instead. Lemma 1 recalls the straightforward relationship
between these quantities. For m ≥ 1, an ordered m-tuple 〈x0, x1, . . ., xm−1〉 is an (X,F )-m-
tuple if xi ⊆ {0, 1, . . . , X−1}, |xi| ∈ F for i < m, and |xi 4 xj | ∈ F for all i 6= j < m.

Lemma 1. The number km+1(GX,F ) of cliques of size m + 1 in the graph GX,F satisfies
km+1(GX,F ) = 2n

(m+1)!Sm(X,F ) where Sm(X,F ) is the number of (X,F )-m-tuples.

Proof. We simply illustrate the cases m = 1 and m = 2. Case m = 1: let {xi, xj} be a
2-clique; i.e. an edge, in GX,F . Clearly 〈xi 4 xj〉 and 〈xj 4 xi〉 are (X,F )-singletons, so we
have 2 distinct (X,F )-singletons for each 2-clique and k2(GX,F ) = 2n

2! S1(X,F ). Case m = 2:
let {xi, xj , xk} be a 3-clique in GX,F . Clearly 〈xi 4 xj , xi 4 xk〉 is an (X,F )-pair of distinct
elements. Considering the permutations of i, j, k we have 3! distinct (X,F )-pairs for each
3-clique and k3(GX,F ) = 2n

3! S2(X,F ). 2



For a positive integer d and a graph G of order n, the graph Gd is obtained by replacing
each vertex of G by a d-clique; therefore Gd has dn vertices. Besides the edges within the
created d-cliques, there is an edge between two vertices vi and vj of Gd if and only if an edge
existed in G between the two vertices corresponding to the d-cliques containing vi and vj ,
i 6= j.

Lemma 2. We have lim
d→∞

k7(G
d) + k7(Gd)(

dn
7

) =

5040(k7(G)+k7(Ḡ))+15120k6(G)+16800k5(G)+8400k4(G)+1806k3(G)+126k2(G)+k1(G)

n7

Proof. A 7-clique in Gd may arise from the following seven cases which correspond to the
possible partitioning of number 7: [{7}], [{1, 6}{2, 5}{3, 4}], [{1, 1, 5}{1, 2, 4}{1, 3, 3}{2, 2, 3}],
[{1, 1, 1, 4}{1, 1, 2, 3}{1, 2, 2, 2}], [{1, 1, 1, 1, 3}{1, 1, 1, 2, 2}], [{1, 1, 1, 1, 1, 2}], [{1, 1, 1, 1, 1, 1, 1}]
– we have grouped them by the number of partitions. For illustration, we count the number
Q2(d) of cliques corresponding to the decompositions [{1, 6}{2, 5}{3, 4}]. We have:

Q2(d) = (
(
2
1

)(
d
1

)(
d
6

)
+
(
2
1

)(
d
2

)(
d
5

)
+
(
2
1

)(
d
3

)(
d
4

)
)k2(G) = (2L1(d)+6L2(d)+10L3(d))d

7

6! k2(G) where
L1(d) = (1− 1

d)(1− 2
d)(1− 3

d)(1− 4
d)(1− 5

d), L2(d) = (1− 1
d)2(1− 2

d)(1− 3
d)(1− 4

d) and L3(d) =
(1− 1

d)2(1− 2
d)2(1− 3

d). To derive similar formulas for the other partitions is straightforward,

giving lim
d→∞

k7(G
d)(

dn
7

) = 5040k7(G)+15120k6(G)+16800k5(G)+8400k4(G)+1806k3(G)+126k2(G)+k1(G)
n7 .

A 7-coclique can only arise in one way, and thus for the number of 7-cocliques, we get

lim
d→∞

k7(Gd)(
nd
7

) =
5040k7(G)

n7
. 2

Remark. In general, the coefficients αm,t for km(G) in the formula reducing the computation

of lim
d→∞

kt(G
d)+kt(Gd)(

dn
t

) to counting cliques and cocliques in the underlying graph G follow

a pattern similar to the Pascal triangle equality as we have αm,t = m(αm,t−1 + αm−1,t−1).
See Lemma 2 for the case t = 7. The coefficients for km(G) and other auxiliary results are
available online at [10].

We can set G = GX,F and then substitute km(GX,F ) by Sm−1(X,F ) using Lemma 1,
and restate Lemma 2 as:

Lemma 3. For a given pair (X,F ), we have lim
d→∞

k7(G
d
X,F ) + k7(Gd

X,F )(
d2n

7

) =

S6(X,F )+S6(X, F̄ )+21S5(X,F )+140S4(X,F )+350S3(X,F )+301S2(X,F )+63S1(X,F )+1

26n−20
.



The approach used in [6] is based on an exhaustive search for a pair (X,F ) achieving a
low number of cliques and cocliques for t = 4. The identified best pair (10, {1, 3, 4, 7, 8, 10})

yields a tie for the best upper bound for c4 and was used to achieve c6 ≤ 0.7446 × 21−
(
6
2

)
.

The referee’s report for [6] mentioned that the same pair yields c7 ≤ 0.7156 × 21−
(
7
2

)
but

this bound was never formally put forward. In this paper we improve the bounds for ct for
t = 6, 7 and 8.

3 Computational Framework

Lemma 3 provides a closed formula for computing a limit of a special sequence of graphs
determined by a given pair (X,F ). If this limit is small enough, it constitutes a counterexam-
ple to the conjecture of Erdős. Thus, the computational framework consists of a routine to
compute all the required Si(X,F )’s for a given pair (X,F ) and a routine performing a search
for the best (X,F ). First, in Section 3.1 we discuss the approach for computing Si(X,F )
that was used previously in [4, 6]. This approach is rather slow and cannot be employed for
t > 4. That is why only a single pair (10, {1, 3, 4, 7, 8, 10}) was used in [4]. Then, in Sec-
tions 3.2 and 3.3 we discuss a different approach to the computation of Si(X,F )’s referred
to as m-approach, and a further enhancement based on symmetry. These techniques provide
a significant speedup allowing an exhaustive search for t = 6 and 7 that was previously
intractable.

3.1 Straightforward computation of Si

For simplicity, for a given X, X̂ denotes the set {0, 1, . . . , X−1}.
Straightforward computation of S1(X,F )

Generate all possible x0 ⊆ X̂ so that |x0| ∈ F ; then

S1(X,F ) =
∑
|x0|∈F

(
X
|x0|
)

Straightforward computation of S2(X,F )

Consider an ordered pair 〈x0, x1〉 of mutually distinct subsets of X̂. Clearly, x0 ∩ (x0 4 x1),
x1∩(x04x1) and x0∩x1 are mutually disjoint. Let m0 = |x0∩(x04x1)|, m1 = |x1∩(x04x1)|
and m01 = |x0 ∩ x1|. We have m0 +m01 = |x0|, m1 +m01 = |x1|, and m0 +m1 = |x0 4 x1|.
In addition, we have |x0|, |x1| and |x0 4 x1| ∈ F . Thus, once generating all possible valid
solutions 〈m0,m1,m01〉, we obtain the value of S2(X,F ) by:

S2(X,F ) =
∑

all valid 〈m0,m1,m01〉

(
X
m0

)(
X−m0

m1

)(
X−m0−m1

m01

)
Straightforward computation of Si(X,F ) for i > 2

Similar computations, with increasing computation time, are performed to obtain the values
of Si(X,F ). We need to consider an ordered i-tuple 〈x0, x1, x2, . . . , xi−1〉 of mutually distinct



subsets of X̂, and find all the valid solutions 〈m0,m1,m2, . . . 〉. Then we can compute the
sum of the corresponding binomial coefficients using a dynamically expanded and maintained
Pascal triangle. Notice that the total number of the solutions increases rather quickly. In
general, we have to consider (2i − 1) solutions to compute Si(X,F ).

3.2 The m-approach to computing Si

In Section 3.1, the Si was obtained by finding all valid solutions and computing the sum of
the corresponding binomial coefficients, a procedure with an O(2iX) worst-case complexity.
Therefore, a more efficient approach is required to speed up the computation.

The following example illustrates how knowing and storing solutions for Si−1’s can be used
to faster obtain solutions for Si. For the illustration, we consider computing a solution for
S3 while having m∗ = 〈m∗0,m∗1,m∗01〉 a valid solution for S2. We could generate a valid
solution m = 〈m0,m1,m2,m01,m02,m12,m012〉 for S3 by reusing m∗, since m0 +m02 = m0

∗,
m1 + m12 = m1

∗ and m01 + m012 = m01
∗. The following constraints can be used to check

the validity: 0 ≤ m0 ≤ m0
∗, 0 ≤ m1 ≤ m1

∗, and 0 ≤ m01 ≤ m01
∗. Recall that |x2| should be

in F , and thus we can calculate m2 directly: as m2 = z −m12 −m02 −m012 for some z ∈ F .
We also need to check the symmetric difference relationships among the xi’s. However, we
only need to check |x0 4 x2| ∈ F and |x1 4 x2| ∈ F .

Remark If m∗ is a valid solution for Si, and m is the corresponding valid solution for Si+1,

Y ∗ =
(

X
m0

∗

)(
X−m0

∗

m1
∗

)(
X−m0

∗−m1
∗

m∗
2

)(
X−m0

∗−m1
∗−m2

∗

m3
∗

)
· · ·

is the corresponding product of the binomial coefficients for m∗, and

Y =
(
X
m0

)(
X−m0

m1

)(
X−m0−m1

m2

)(
X−m0−m1−m2

m3

)
· · ·

is the corresponding product of the binomial coefficients for m, then
Y = Y ∗

(
m0

∗

m0

)(
m1

∗

m1

)
· · ·
(
m01···i∗

m01···i

)(
X−m0

∗−m1
∗−m01

∗−···
mi

)
.

Similarly, to compute Si we only need to consider 2i−1 m’s, if we reuse the results from the
computation of Si−1.

3.3 Exploiting symmetry

This technique to further speed up the computation of Si relies on the inherent symmetries
of the mi’s. We shall illustrate the technique on S2: if 〈m0,m1,m01〉 is a valid solution for
S2 with m0 6= m1, then 〈m1,m0,m01〉 is also a valid solution. Since the products of the
corresponding binomial coefficients for those two solutions are the same, we only need to
compute the product of the binomial coefficients for one solution and multiply it by 2.

Similarly, the symmetries can be exploited for computing Si for i ≥ 2. Thus, one can fix
the order of the xi and take into account multiplicities by multiplying by the corresponding
coefficients. We therefore need, for example for the computation of S7, to consider only
about 1% of the total number of solutions. Table 1 shows the coefficients used for S4. The
coefficients for other Si’s are available online at [10].



Note that while the determination of Si and S̄i for the first i’s is very fast even without
exploiting the symmetry, the computational gain increases with i. Table 2 shows the number
of solutions that need to be computed when we used the pair (X,F ) = (11, {3, 4, 7, 8, 10, 11})
to compute S4, S5 and S6.

xi ordering coefficient

|x0| > |x1| > |x2| > |x3| 4!

|x0| > |x1| > |x2| = |x3| 2
(
4
2

)
|x0| > |x1| = |x2| > |x3| 2

(
4
2

)
|x0| = |x1| > |x2| > |x3| 2

(
4
2

)
|x0| > |x1| = |x2| = |x3|

(
4
3

)
|x0| = |x1| > |x2| = |x3|

(
4
2

)
|x0| = |x1| = |x2| > |x3|

(
4
3

)
|x0| = |x1| = |x2| = |x3| 1

Table 1. Ordering of the xi’s and corresponding coefficients for S4 computation

i # of solutions # of solutions Ratio # of solutions # of solutions Ratio

in Si exploiting symmetry in S̄i exploiting symmetry

4 15,668 1,813 3.0% 4,477 794 5.9%

5 377,196 17,625 0.5% 86,978 8,214 1.7%

6 9,104,496 160,626 0.08% 1,145,103 55,803 0.46%

Table 2. Exploiting symmetry for (X,F ) = (11, {3, 4, 7, 8, 10, 11})

4 New Upper Bounds for c6, c7, and c8

Using the approach described in Sections 3.2 and 3.3 we performed an exhaustive search on
(X,F ) for X = 9, 10, 11 and 12 for t = 6 and 7, using code written in C++.

Besides the usual testing and verification, we also computationally checked the new program
by recomputing previously known values as well as theoretically known ones. We first com-
puted the values of S1, . . . , S6 for all the previously used pairs (X,F ) and obtained the same
results, using a tiny fraction of the computation time previously required. We then computed
the values of S1, . . . S7 for full families because for such a family {1, 2, . . . X} the number

i-tuples can be expressed using Lemma 1 with a closed form formula Si = (2X−1)!
(2X−i−1)! . The

computed and theoretical values coincided, which is a strong indication that the generation
of valid solutions is both sound and complete.

The best results were achieved for t = 6 by (X,F ) = (10, {1, 3, 4, 7, 8}) yielding c6 ≤ 0.74444×

21−
(
6
2

)
, see Table 3. For t = 7 by (X,F ) = (11, {3, 4, 7, 8, 10, 11}) yielding c7 ≤ 0.6869 ×

21−
(
7
2

)
, see Table 4.



Representing the pair (X,F ) as the characteristic vector of F as a subset of {1, 2, . . . , X}, one
notices the best result for t = 6, respectively t = 7, are obtained with (X,F ) = [1011001100],
respectively (X,F ) = [00110011011], so a natural candidate to consider for t = 8 is (X,F ) =
[101100110011]. Setting accordingly (X,F ) = (12, {1, 3, 4, 7, 8, 11, 12}) indeed yielded an im-

proved upper bound c8 ≤ 0.7002× 21−
(
8
2

)
, see Table 5.

Proposition 1. We have c6 ≤ 0.7445 × 21−
(
6
2

)
, c7 ≤ 0.6869 × 21−

(
7
2

)
, and

c8 ≤ 0.7002× 21−
(
8
2

)
.

i 1 2 3 4 5

Si(X,F ) 505 125,010 14,562,090 726,780,600 13,191,935,400

Si(X, F̄ ) 518 135,726 17,463,606 1,028,265,840 26,106,252,480

Table 3. The values of Si(X,F ) and Si(X,F ) when (X,F ) = (10, {1, 3, 4, 7, 8})

i 1 2 3 4 5 6

Si(X,F ) 1002 490,050 113,148,090 11,590,147,800 506,500,533,000 14,677,396,549,200

Si(X, F̄ ) 1045 556,842 146,860,362 17,896,958,640 950,437,303,200 21,359,851,904,160

Table 4. The values of Si(X,F ) and Si(X,F ) when (X,F ) = (11, {3, 4, 7, 8, 10, 11})

i 1 2 3 4 5 6 7

Si(X,F ) 2,027 2,030,562 986,934,042 223,874,343,000 21,997,023,741,000 868,195,804,568,400 23,207,044,770,478,800

Si(X, F̄ ) 2,068 2,158,860 1,120,464,444 279,763,013,640 32,608,321,954,560 1,762,344,151,444,800 47,296,455,155,389,440

Table 5. The values of Si(X,F ) and Si(X,F ) when (X,F ) = (12, {1, 3, 4, 7, 8, 11, 12})

5 Conclusion and future work

We presented a computational framework for computing the ratio of monochromatic t-cliques
and the number of all t-subsets for a specific Cayley graph determined by a pair (X,F ). The
program allows for searching for counterexamples to a 1960 Erdős’s conjecture on multiplic-
ities of complete subgraphs. We described a significant speedup obtained by the so-called
m-approach and considering inherent symmetries. As a result, we were able to improve the
known upper bounds for t = 6, 7 and 8.

The computational framework presented lends itself to straightforward parallelizations. A
parallel version of our program will allow us to explore larger t’s and also to enlarge the
search space for smaller values of t. The first task thus will be to search for a better pair
(X,F ) for t = 8 to improve the upper bound for c8, and to redo the searches for t = 4, 5, 6
and 7 in larger search spaces.
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3. Erdős, P., Moon, J.W.: On subgraphs of the complete bipartite graph. Canadian Mathematical Bulletin

7 (1964) 35-39.
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9. Jagger, C., Šťov́ıček, P., Thomason, A.: Multiplicities of subgraphs. Combinatorica 16 (1996) 123-141

10. Ramsey multiplicities, http://optlab.mcmaster.ca/~jessiel/ramsey.htm.
11. Sidorenko, A.F.: Cycles in graphs and functional inequalities. Mathematical Notes 46 (1989) 877-882.
12. Thomason, A.: A disproof of a conjecture of Erdös in Ramsey theory. Journal of the London Mathematical

Society 39-2 (1989) 246-255.
13. Thomason, A.: Graph products and monochromatic multiplicities. Combinatorica 17 (1997) 125-134.


