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On singularities of extremal periodic strings ∗

Antoine Deza and Frantisek Franek

Abstract

Fraenkel and Simpson conjectured in 1998 that the number of distinct squares in a string
is at most its length. Similarly, Kolpakov and Kucherov conjectured in 1999 that the
number of runs in a string is at most its length. Since then, both conjectures attracted the
attention of many researchers and many results have been presented, including asymp-
totic lower bounds for both, asymptotic upper bounds for runs, and universal upper
bounds for distinct squares. We consider the role played by the size of the alphabet of
the string in both problems and investigate the functions σd(n) and ρd(n), i.e. the max-
imum number of distinct primitively rooted squares, respectively runs, over all strings of
length n containing exactly d distinct symbols. We revisit earlier results and conjectures
and express them in terms of singularities of the two functions where a pair (d, n) is a
singularity if σd(n)− σd−1(n− 2) ≥ 2, or ρd(n)− ρd−1(n− 2) ≥ 2 respectively.

Keywords: string, square, primitively rooted square, maximum number of distinct primitively root-

edsquares, run, maximum number of runs, parameterized approach, (d, n− d) table, singularity

1 Introduction and motivation

A square, or a tandem repeat is a fundamental regularity in a string, and a simplest of
repetitions. We denote this fact as u2 indicating concatenation of a string u with a copy of
itself; u is referred to as the generator of the square and the length of u is referred to as the
period of the square. A primitively rooted square is a square whose generator is primitive,
i.e. not a repetition itself. A run, a maximal possibly fractional primitively rooted repetition
in a string, was conceptually introduced by Main in 1989 [19]. The term run was coined
by Iliopoulos, Moore, and Smyth in 1997 [17]. A run in a string x encoded by a four-tuple
(s, p, e, t) has a primitive generator x[s .. s+p] of length p repeating e times (e ≥ 2), followed
by the prefix of the generator of length t (0 ≤ t < p). More precisely, x[s+i] = x[s+i+rp] for
any 1 ≤ i < s+ p and 1 ≤ r < e, and x[s+ i] = x[s+ i+ rp] for any 1 ≤ i ≤ t and 1 ≤ r ≤ e.
The maximality in this context means that the same is neither true for s − 1 nor for s + 1.
Thus, the knowledge of all runs succinctly captures the knowledge of all occurrences of all
repetitions. It is natural to ask about the maximum number of distinct squares or runs in a
string and to expect both to depend on the length of the string.

The problem of the number of distinct squares when the types of the squares in a string
are counted rather than their occurrences, was first introduced in 1998 by Fraenkel and
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Simpson [13], showing that the number of distinct squares in a string of length n is at
most by 2n, in particular the number of primitively rooted distinct squares in strings of
length n ≥ 5 is bounded by 2n − 8, and for binary strings of length n ≥ 22 is bounded by
2n − 29. They also gave an infinite sequence of of strictly increasing length with a number
of primitively rooted distinct squares asymptomatically approaching the strings length from
below, and conjectured that the number of distinct squares is at most the length n of the
string. The work relied on an improved Lemma 10 of Crochemore and Rytter [7] stating
that if u2, v2, w2 are prefixes of a string x and w is primitive, and |u| > |v| > |w|, then
|u| ≥ |v|+ |w|. Ilie [15] provided a simpler proof of the main lemma of [13] and presented an
asymptotic upper bound of 2n−Θ(log n) in [16].

Though there may be as many as O(n log n) repetitions in a string of length n, see [5],
it was hoped that the more succinct notation of runs would eliminate the need to list all
repetitions. Kolpakov and Kucherov [18] in 1999 showed that the number of runs in a string
is O(n) and conjectured that the maximum number of runs in a string is at most its length
n. Let ρ(n) denote the maximum number of runs over all strings of length n. Several authors
have presented asymptotic upper and lower bounds for ρ(n), see Crochemore and Ilie [6],
respectively Matsubara et al. [20], for upper, respectively lower, bounds, and references
therein.

The problems of the number of distinct squares and runs where, in addition to the
consideration of the length of a string, the size of its alphabet is considered as an additional
parameter, have been studied in [1, 4, 8, 9, 11, 12].

A string x of length n with d distinct symbols is referred to as a (d, n)-string, s(x),
respectively r(x), denotes the number of distinct primitively rooted squares, respectively
runs, of x. Let σd(n), respectively ρd(n), denote the maximum number of distinct primitively
rooted squares, respectively runs, over all (d, n)-strings. A (d, n)-string satisfying s(x) =
σd(n), respectively r(x) = ρd(n), is referred to as a square-maximal, respectively run-maximal
string.

Some elementary properties of the function σd(n) are discussed in [11], where the values
of σd(n) are presented in the form of (d, n − d) table, where the value σd(n) is the entry at
row d and column n−d, pointing to ways of applying reductions to the problem of bounding
the maximum number of distinct squares.

The computed values with 2 ≤ d ≤ 15 and 2 ≤ n − d ≤ 15 of the (d, n − d) table for
σd(n) are given in Table 1 with the main diagonal in bold, and the up-to-date table of all
computed values is available on-line at [10].

Some elementary properties of the function ρd(n) are discussed in [4, 8, 9], where the
values are presented in the (d, n − d) table, pointing to ways of applying reductions to the
problem of bounding the maximum number of runs. The computed values with 2 ≤ d ≤ 15
and 2 ≤ n − d ≤ 15 of the (d, n − d) table for ρd(n) are given in Table 2 with the main
diagonal in bold, and the up-to-date table of all computed values is available on-line at [2].

While there are similarities, the investigation of distinct squares is different from the
investigation of runs in a string in many ways. For instance the concatenation of two strings
may merge some runs from both strings, but would not merge distinct squares, on the other
hand all the runs in both strings count, while the same is not true for distinct squares. The
computed values of σd(n) and ρd(n) appear to be very close and hint at a simple relationship
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n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12
3 2 3 3 4 4 5 6 7 8 8 9 10 11 12
4 2 3 4 4 5 5 6 7 8 9 9 10 11 12
5 2 3 4 5 5 6 6 7 8 9 10 10 11 12
6 2 3 4 5 6 6 7 7 8 9 10 11 11 12
7 2 3 4 5 6 7 7 8 8 9 10 11 12 12
8 2 3 4 5 6 7 8 8 9 9 10 11 12 13
9 2 3 4 5 6 7 8 9 9 10 10 11 12 13
10 2 3 4 5 6 7 8 9 10 10 11 11 12 13
11 2 3 4 5 6 7 8 9 10 11 11 12 12 13
12 2 3 4 5 6 7 8 9 10 11 12 12 13 13
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: (d, n− d) table for σd(n) with 2 ≤ d ≤ 15 and 2 ≤ n− d ≤ 15

σd(n) ≤ ρd(n) as illustrated in Table 3 where the entries are presented in a (d, n−2d) table.
The up-to-date table of all computed values ρd(n)− σd(n) is available on-line at [10].

The computed values of σd(n) and ρd(n) lead to the hypothesized universal upper bounds
[9]:

σd(n) ≤ n− d− blog2b(n+ 10− 2d)/6cc − dlog2d(n+ 3− 2d)/5ee for n ≥ 2d+ 2

ρd(n) ≤ n− d− dlog2d(n+ 4− 2d)/4ee for n ≥ 2d

The values for σd(n) and ρd(n) computed to date indicate that for n ≥ d ≥ 3, σd(n) −
σd−1(n− 2) = 1 and ρd(n)− ρd−1(n− 2) = 1 except for relatively rare pairs (n, d) satisfying
σd(n) ≥ σd−1(n− 2) + 2, respectively ρd(n) = ρd−1(n− 2) + 2. For σd(n) function, so far we
have found two such pairs, (3, 35) as σ3(35) = 25 and σ2(33) = 23, and (3, 36) as σ3(36) = 26
and σ2(34) = 24, see [10]. For ρd(n) function, so far we have found three such pairs, (3, 15) as
ρ3(15) = 10 and ρ2(13) = 8, see Table 2 and the entries in bold italic, (3, 43) as ρ2(41) = 33
and ρ3(43) = 35, and (4, 44), as ρ3(42) = 33 and ρ4(44) ≥ ρ3(43) = 35, see [2].

Though it is impossible to have 3 consecutive equal values in any row of the (d, n − d)
table for ρd(n) as ρd(n+ 2) > ρd(n), there is no such restriction for σd(n). Such three times
repeating values were found for binary strings at lengths 31, 32, and 33, however it is the
only case known to us to date. In general, whenever σd(n) = σd(n + 1) = σd(n + 2), it
follows that either eventually there is an exceptional pair (n′, d′) so that n′−2d′ ≥ n−2d, or
σd+k(n+ 2k) = σd+k(n+ 1 + 2k) = σd+k(n+ 2 + 2k) for any k ≥ 1. Moreover, it follows that
σd+1(n+2) > σd(n) = σd(n+2); that is, the maximum number of squares among all strings of
length n+2 is not achieved by (d, n+2)-strings. In particular, σ2(31) = σ2(33) = σ2(33) = 23
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n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

2 2 2 3 4 5 5 6 7 8 8 10 10 11 12
3 2 3 3 4 5 6 6 7 8 9 10 11 11 12
4 2 3 4 4 5 6 7 7 8 9 10 11 12 12
5 2 3 4 5 5 6 7 8 8 9 10 11 12 13
6 2 3 4 5 6 6 7 8 9 9 10 11 12 13
7 2 3 4 5 6 7 7 8 9 9 10 11 112 13
8 2 3 4 5 6 7 8 8 9 10 11 11 12 13
9 2 3 4 5 6 7 8 9 9 10 11 12 12 13
10 2 3 4 5 6 7 8 9 10 10 11 12 13 13
11 2 3 4 5 6 7 8 9 10 11 11 12 13 13
12 2 3 4 5 6 7 8 9 10 11 12 12 13 14
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 2: (d, n− d) table for ρd(n) with 2 ≤ d ≤ 15 and 2 ≤ n− d ≤ 15

n− 2d
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

2 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1
3 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
4 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
5 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
6 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
7 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1

Table 3: (d, n− 2d) table for ρd(n)− σd(n) with d ≤ 7 and n− 2d ≤ 15

and so any binary string of length 33 has at most 23 distinct squares while there is a ternary
string with 24 distinct squares, see [10].

We hypothesize that though rare, there are infinitely many such pairs for both ρd(n) and
σd(n). Our hypothesis implies that the values along a column of Table 3 are constant except
for every such pair (d, n) and its corresponding entry in column n− 2d and row d− 1 in the
(d, n − d) table. For illustration, for (3, 15) for ρd(n), the entry at column 9 and row 2 is
depicted in bold in Table 3. This leads us to the following definition: we refer to a pair (d, n)
such that σd(n)− σd−1(n− 2) ≥ 2, or ρd(n)− ρd−1(n− 2) ≥ 2 respectively, as a singularity.
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2 Basic properties of σd(n) and ρd(n)

The following basic properties of σd(n) were presented in [11] and are summarized in Propo-
sition 1. The values of σd(n) are increasing when moving right along a row of the (d, n− d)
table and the increase is of at most 2, the values are increasing when moving down along a
column, the values are strictly increasing when moving along descending diagonals, the val-
ues under and on the main diagonal along a column are constant. In addition, the 2 values
immediately above the main diagonal are equal and differ from the value on the main diag-
onal by at most 1 for d ≥ 4. Note that the main diagonal of the (d, n− d) table corresponds
to the values of σd(2d) for d ≥ 2.

Proposition 1 ([11]).
(s1) 0 ≤ σd(n+ 1)− σd(n) ≤ 2 for n ≥ d ≥ 2,
(s2) σd(n) ≤ σd+1(n+ 1) for n ≥ d ≥ 2,
(s3) σd(n) < σd+1(n+ 2) for n ≥ d ≥ 2,
(s4) σd(n) = σd+1(n+ 1) for 2d ≥ n ≥ d ≥ 2,
(s5) σd(n) ≥ n− d, σd(2d+ 1) ≥ d and σd(2d+ 2) ≥ d+ 1 for 2d ≥ n ≥ d ≥ 2,
(s6) σd−1(2d− 1) = σd−2(2d− 2) and 0 ≤ σd(2d)− σd−1(2d− 1) ≤ 1 for d ≥ 4,
(s7) 1 ≤ σd+1(2d+ 2)− σd(2d) ≤ 2 for d ≥ 2.

Since σ2(41) = 31 and 2 ≥ σ2(n+1)−σ2(n) ≥ 0, we have the following slight improvement
of the upper bound for σ2(n) in Corollary 2. In addition, σ15(30) = 15 and σd+1(2d + 2) −
σd(2d) ≤ 2 implies σd(n) ≤ 2n − 15 for n ≥ 15, thus, using σd(n) ≤ σn−d(2n − 2d) for
n ≥ 2d ≥ 4, we can also slightly improve the bound for the maximum number σ(n) of
distinct squares over all strings of length n, for comparison see [13].

Corollary 2.
(c1) σ2(n) ≤ 2n− 51 for n ≥ 41,
(c2) σ(n) ≤ 2n− 19 for n ≥ 30.

A singleton refers to a symbol in a string that occurs exactly once, while a pair refers to a
symbol that occurs exactly twice. The following structural result for square-maximal strings
on the main diagonal was noted in [11] and we presented in here reformulated in terms of
singularities.

Proposition 3. Let (d, 2d) be the first singularity on the main diagonal, i.e. the least d such
that σd(2d) − σd−1(d − 2) ≥ 2. Then any square-maximal (d, 2d)-string does not contain a
pair but must contain at least d2d3 e singletons.

Propositions 1 and 3 yield Theorem 4 underlining the importance of the diagonals of the
(d, n− d) table with respect to the conjectured upper bound n− d for σd(n). In particular,
Theorem 4 shows that in order to prove σd(n) ≤ n−d for all n and d it is enough to prove the
bound for the special case n = 2d for all d, i.e. for the main diagonal of the (d, n− d) table.
In other words, σd(2d) ≤ d for all d implies that the maximum number σ(n) of runs over all
strings of length n ≥ 3 satisfies σ(n) ≤ n− 2. This equivalence is generalized to the special
case n = 4d. In addition, the role played by σd(2d) and σd(2d+1) is underlined as well as the
hypothesis that the run-maximal (d, 2d)-strings are, up to relabelling, unique. The original
version of Theorem 3 is presented in [11], here we restate it in terms of singularities:
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Theorem 4.
(e1) no (d, 2d) singularity ⇐⇒ {σd(n) ≤ n− d for n ≥ d ≥ 2},
(e2) {σd(n) ≤ n− d for n ≥ d ≥ 2} ⇐⇒ {σd(4d) ≤ 3d for d ≥ 2},
(e3) {σd(n) ≤ n− d for n ≥ d ≥ 2} ⇐⇒ {σd(2d+ 1)− σd(2d) ≤ 1 for d ≥ 2},
(e4) no (d, 2d+ 1) singularity =⇒ {no (d, 2d) singularity and σd(n) ≤

n− d− 1 for n > 2d ≥ 4},
(e5) {σd(2d) = σd(2d+ 1) for d ≥ 2} =⇒ {no (d, 2d) singularity and σd(n) ≤

n− d− 1 for n > 2d ≥ 4},
(e6) {σd(2d) = σd(2d+ 1) for d ≥ 2} =⇒ {square-maximal (d, 2d)-strings

are, up to relabelling, unique and equal to a1a1a2a2a2 . . . adad}.

The following basic properties of ρd(n) were presented in [4, 8, 9] and are summarized
in Proposition 5. The values of ρd(n) are increasing when moving right along a row of the
(d, n− d) table, the values are increasing when moving down along a column, the values are
strictly increasing when moving along descending diagonals, the values under and on the
main diagonal along a column are constant. In addition, the 3 values immediately above the
main diagonal are equal and differ from the value on the main diagonal by at most 1 for
d ≥ 5. Note that the main diagonal of the (d, n−d) table corresponds to the values of ρd(2d)
for d ≥ 2.

Proposition 5.
(r1) ρd(n) ≤ ρd+1(n+ 1) for n ≥ d ≥ 2,
(r2) ρd(n) ≤ ρd(n+ 1) for n ≥ d ≥ 2,
(r3) ρd(n) < ρd+1(n+ 2) for n ≥ d ≥ 2,
(r4) ρd(n) = ρd+1(n+ 1) for 2d ≥ n ≥ d ≥ 2,
(r5) ρd(n) ≥ n− d, ρd(2d+ 1) ≥ d and ρd(2d+ 2) ≥ d+ 1 for 2d ≥ n ≥ d ≥ 2,
(r6) ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) and

0 ≤ ρd(2d)− ρd−1(2d− 1) ≤ 1 for d ≥ 5.

The following proposition from [4] is restated in terms of singularities.

Proposition 6. Let (d, 2d) be the first singularity on the main diagonal, i.e. the least d
such that ρd(2d)− ρd−1(2d− 2) ≥ 2. Then any run-maximal (d, 2d)-string does not contain
a symbol occurring exactly 2, 3, . . . , 7 or 8 times, and must contains at least d7d8 e singletons.

Propositions 5 and 6 yield Theorem 7 underlining the importance of the diagonals of the
(d, n− d) table with respect to the conjectured upper bound n− d for σd(n). In particular,
Theorem 7 shows that in order to prove ρd(n) ≤ n− d for all n and d it is enough to prove
the bound for the special case n = 2d for all d, i.e. for the main diagonal of the (d, n − d)
table. In other words, ρd(2d) ≤ d for all d implies that the maximum number ρ(n) of runs
over all strings of length n ≥ 3 satisfies ρ(n) ≤ n− 2. This equivalence is generalized to the
special case n = 9d. In addition, the role played by ρd(2d) and ρd(2d + 1) is underlined as
well as the hypothesis that the run-maximal (d, 2d)-strings are, up to relabelling, unique.

Theorem 7.
(e1) no (d, 2d) singularity ⇐⇒ {ρd(n) ≤ n− d for n ≥ d ≥ 2},
(e2) {ρd(n) ≤ n− d for n ≥ d ≥ 2} ⇐⇒ {ρd(9d) ≤ 8d for d ≥ 2},
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(e3) {ρd(n) ≤ n− d for n ≥ d ≥ 2} ⇐⇒ {ρd(2d+ 1)− ρd(2d) ≤ 1 for d ≥ 2},
(e4) no (d, 2d+ 1) singularity =⇒ {no (d, 2d) singularity and ρd(n) ≤

n− d− 1 for n > 2d ≥ 4},
(e5) {ρd(2d) = ρd(2d+ 1) for d ≥ 2} =⇒ {no (d, 2d) singularity and ρd(n) ≤

n− d− 1 for n > 2d ≥ 4},
(e6) {ρd(2d) = ρd(2d+ 1) for d ≥ 2} =⇒ {square-maximal (d, 2d)-strings

are, up to relabelling, unique and equal to a1a1a2a2a2 . . . adad}.

3 Computational substantiation of the hypothesized proper-
ties for σd(n) and ρd(n) for tractable instances

The notion of r-cover introduced in [3] was modified for the problem of distinct squares in
[12] and used as a basis for a computational framework for determining σd(n) values. This
modification of the r-cover is referred to as the s-cover. A heuristic to obtain an efficient
lower bound σ−2 (n) for σ2(n) is given in [12]. Moreover, the value σ−d (n) = max {σd−1(n −
1), σd−1(n−2) + 1, σd(n−1)} is used there as an efficient lower bound for σd(n) for d ≥ 3.
In both cases, by efficient we mean the fact that for all d and n we have dealt with so far,
σ−d (n) either equals the actual value of σd(n) or differs by 1. Furthermore, it is shown in
[12] that a square-maximal string with more than σ−d (n) must have an s-cover of specific
properties satisfying certain density conditions, and thus a search for a square-maximal
string can be limited to such strings only, significantly reducing the search space, allowing
the determination σd(n) for previously intractable values, see [10]. The computations so far
support the hypothesis that there are no singularities on the main diagonal for σd(n).

For the runs, the notion of r-cover as introduced in [3] was generalized in [1] and used as a
basis for a computational framework for determining ρd(n) values. In a similar fashion as for
squares, a heuristic to obtain an efficient lower bound ρ−2 (n) for ρ2(n) is given in [3] and the
value ρ−d (n) = max {ρd−1(n−1), ρd−1(n−2)+1, ρd(n−1)} is used there as an efficient lower
bound for ρd(n) for d ≥ 3. Again, by efficient we mean the fact that up to now for all d and
n we have dealt with, ρ−d (n) equals the actual value of ρd(n) or differs by 1. Furthermore,
[3] shows that a run-maximal string with more than ρ−d (n) must have an r-cover of specific
properties satisfying certain density conditions, and thus a search for a run-maximal string
can be limited to such strings only, significantly reducing the search space, allowing the
determination of ρd(n) for previously intractable values, see [2]. The computations so far
support the hypothesis that there are no singularities on the main diagonal for ρd(n).

The subroutine computing the number of distinct squares or runs in a string in the
framework uses the C++ implementation of the algorithm introduced in [14].
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