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Abstract

We investigate the function ρd(n) = max{ r(x) | x is a (d, n)-string } where r(x)

is the number of runs in the string x, and a (d, n)-string is a string with length n

and exactly d distinct symbols. Our investigation is motivated by the conjecture

that ρd(n) ≤ n − d. We present and discuss fundamental properties of the ρd(n)

function. The values of ρd(n) are presented in the (d, n−d)-table with rows indexed

by d and columns indexed by n− d which reveals the regularities of the function.

We introduce the concepts of the r-cover and core vector of a string, yielding a

novel computational framework for determining ρd(n) values. The computation of

the previously intractable instances is achieved via first computing a lower bound,

and then using the structural properties to limit our exhaustive search only to

strings that can possibly exceed this number of runs. Using this approach, we

extended the known maximum number of runs in binary string from 60 to 74.

In doing so, we find the first examples of run-maximal strings containing four

consecutive identical symbols. Our framework is also applied for an arbitrary

number of distinct symbols, d. For example, we are able to determine that the

maximum number of runs in a string with 23 distinct symbols and length 46 is

23. Further, we discuss the structural properties of a shortest (d, n)-string x such

that r(x) > n− d, should such a string exist.
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Chapter 1

Introduction and string basics

Ubiquitous in the world of computer science are strings–linear sequences of sym-

bols. Strings have particular importance in the fields of computational biology

and bioinformatics, where they represent, among other things, DNA and protein

sequences. Repetitive structures in biological sequences are of particular impor-

tance, as they are often related to the function of the sequence, and can be used

to deduce evolutionary history. The vast amounts of data being created daily

have lead to an increased need to both analyze and compress that data efficiently.

Strings often need to be transmitted securely, and therefore string algorithms are

important in the field of cryptography.

Besides the practical implications, repeats in strings are one of the most

fundamental aspects of combinatorics on words [9, 35, 41]. In this thesis we will

explore a particular repetitive structure on strings, namely runs. Specifically, we

are interested in strings which have the maximum number of runs possible given

certain parameters. We will develop several structural insights, and use them to

compute run-maximal strings.

1



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

1.1 Introduction to string terminology

A string x is a linear sequence of symbols and is indexed from 1 through n,

x[1] . . .x[n]. The symbols of a string are drawn from a given alphabet, A. The

alphabet of a string x is the set of symbols occurring in x and is denoted by A(x).

A (d, n)-string refers to a string of length n with exactly d distinct symbols.

The function d(x) denotes the number of distinct symbols of the string x, while

the function n(x) gives the length of x. As a shorthand, when unambiguous it

will be assumed that a string has its length given by n and its number of distinct

symbols given by d. It follows that |A(x)| = d(x). A distinction must be drawn

between A, the alphabet from which x takes its symbols, and the alphabet of x,

A(x). The former case refers to the symbols which may appear in x, whereasA(x)

is exactly the set of symbols which do appear in x. This distinction is important

when discussing strings generated on a certain sized alphabet, corresponding to

A, compared to the strings with some number of distinct symbols, corresponding

to A(x).

A symbol which occurs exactly one, two, or k times in a string will be

termed respectively a singleton, pair, or k-tuple.

A substring x[i..j] is the concatenation of the symbols x[i], x[i + 1], . . . ,

x[j]. If j < i, then the substring x[i..j] will be taken to be the empty string ε.

The join, x[i1..ik] ∪ x[j1..jm], of two substrings of a string x is defined

when:

• i1 ≤ j1 ≤ ik + 1, in which case x[i1..ik] ∪ x[j1..jm] = x[i1..max{ik, jm}], or

• j1 ≤ i1 ≤ jm + 1, in which case x[i1..ik] ∪ x[j1..jm] = x[j1..max{ik, jm}].

Thus, the join is defined when the two substrings are either adjacent or overlap,

2
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in which case it is the substring of elements which are in one of the substrings or

both. Otherwise, the join is said to be undefined [2].

The intersection, x[i1..ik] ∩ x[j1..jm], of two substrings of a string x is

defined by one of three cases:

• i1 ≤ j1 ≤ ik, in which case x[i1..ik] ∩ x[j1..jm] = x[j1..min{ik, jm}], or

• j1 ≤ i1 ≤ jm, in which case x[i1..ik] ∩ x[j1..jm] = x[i1..min{ik, jm}], or

• ik < j1 or jm < i1 in which case x[i1..ik] ∩ x[j1..jm] = ε.

Thus, the intersection is non-empty when the two substrings overlap, and is the

substring consisting of the elements which are in both of the substrings. Otherwise,

the intersection is empty.

We illustrate the concept of a join and intersection of two substrings in

Figure 1.1.

���������������
���������������
���������������
���������������

����������
����������
����������
��������������������

����������
����������
����������

�����
�����
�����
�����

Substrings

Join

Intersection

Figure 1.1: A graphical illustration of the join and the intersection of two sub-
strings.

1.2 Notations and definitions

In the papers which are generally considered the foundation of the field of combina-

torics on words Thue [47] investigated strings which lack repetitions. A repetition

consists of an integer number of copies of a substring adjacent to each other.

3
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Definition 1.1: The triple (s, p, e) represents a repetition in x at the substring

x[s..s+ ep− 1] if:

• x[s..s+ e− 1] = x[s+ e..s+ 2e− 1] = . . . = x[s+ (e− 1)p..s+ ep− 1], and

• 1 ≤ s < n, 1 ≤ 1 ≤ n
2
, and e ≥ 2.

The variable s is the start of the repetition, e is the exponent, and p is

the period of the repetition–the length of the substring which is repeated. The

repeated substring x[s..s + p− 1] is termed the generator. The period has also

been called the period length [37]. The generator of a repetition has also been

called the root [36] and the periodic part [42, 43]. Other names for repetitions in

the literature include integer repetitions [36] and integer powers [36],

Thue was interested in building infinitely long strings with α distinct sym-

bols which do not contain a repetition of exponent at least r, but do have repe-

titions of exponent r − 1 [47]. Since that time, counting repetitions and finding

strings which are repetition-dense rather than repetition-free has become a focus

of research attention.

As the initial work on repetitions was on the prevention of repetitions,

the concept of a repetition is quite general. For example, under the most gen-

eral definition of a repetition, the string aaaa contains 6 repetitions: (1, 1, 2),

(1, 1, 3), (1, 1, 4), (2, 1, 2), (2, 1, 3), (3, 1, 2), and (1, 2, 2). After attention turned to

counting repetitions, it became desirable to find more efficient ways to talk about

repetitions.

The term left-maximal repetition refers to a repetition which cannot

be extended by another copy of the generator to the left, while a right-maximal

repetition corresponds to the same property to the right. In other words, (s, p, e)

4
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is left-maximal when (s−p, p, e+1) is not a repetition, and is right-maximal when

(s, p, e+1) is not a repetition. A maximal repetition is a repetition which cannot

be extended with another copy of the generator to either the left or the right [6, 36].

In the literature, when the usage is unambiguous, the phrase maximal repetition

has also been used as a shorthand for maximal fractional repetition, another name

for runs which are defined below [36].

Primitively rooted repetitions are those repetitions which have a gener-

ator which is primitive–that is, not itself a repetition [11, 31, 35, 36, 38, 42, 43].

A repetition (s, p, e) is left-shiftable when x[s− 1] is defined, that is s > 1,

and x[s−1] = x[s+p−1]. Similarly, a repetition is right-shiftable when x[s+ ep]

is defined, that is s + ep ≤ n and x[s] = x[s + ep]. In other words, a repetition

(s, p, e) is left-shiftable exactly when (s−1, p, e) is defined and also a repetition,

and is right-shiftable exactly when (s+1, p, e) is defined and also a repetition. Note

that if a repetition is left-maximal it does not imply that it is not left-shiftable.

Left-maximality requires a whole additional copy of the generator to the left, while

left-shiftablity only requires that there is a repetition of the same period starting

immediately to the left. It follows, however, that if a repetition is not left-maximal,

then it must be left-shiftable. The same properties hold for right-maximality and

right-shiftability.

In Figure 1.2 we illustrate a small string with many repetitions. Table 1.1

identifies the properties of all the repetitions labelled in Figure 1.2.

A repetition with exponent 2 is termed a square. When the exponent is

3, the repetition is termed a cube. Repetitions with a larger exponent will be

referred to as a repetition with exponent e.

Crochemore [6] showed that the maximum number of primitively rooted

5
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a

9
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6

5
4

3
2

1

bbababaa b

Figure 1.2: The nine repetitions which include both an a and b in the string
aababababb. Table 1.1 classifies these repetitions.

maximal repetitions in a string is O(n log n), and this bound is the best possible

due to results on Fibonacci strings. This provides a limit on the run-time of

repetition-finding algorithms as in order to report all repetitions the algorithm

requires at least O(n log n) steps. In an effort to get past this bound, the search

turned to a more efficient way to encode repetitions. This led to the development

of the notion of runs.

Definition 1.2: The quadruple (s, p, e, t) represents a run in x if:

• (s+ i, e, p) is a repetition for all 0 ≤ i ≤ t, and

• there is no repetition (s− 1, e, p), that is the run is not left-shiftable, and

• there is no repetition (s + t + 1, e, p), that is the run is not right-shiftable,

and

• x[s..s+ p− 1] is primitive.

As in the case of repetitions, s is the start of the run, e is the exponent,

p is the period, and x[s..s + p − 1] is the generator. The term t refers to the

6
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Table 1.1: The classification of nine of the repetitions in the string aababababb, as
identified in Figure 1.2.

Repetition Left- Right- Maximal Primitively Left- Right-
maximal maximal rooted shiftable shiftable

1 yes no no yes no yes
2 yes no no yes yes yes
3 no no no yes yes yes
4 no yes no yes yes yes
5 no yes no yes yes no
6 yes yes yes no no no
7 yes no no yes no yes
8 no yes no yes yes no
9 yes yes yes yes no no

tail, and is the length of the proper prefix of the generator which occurs at the

end of the run. The starting position s has also been referred to as the occurrence

of the run [42].

The term run was coined by Iliopoulos, Moore, and Smyth in [31]. The

term fractional repetitions appears in the literature, and refers both to runs, and

to a part of a run which may be extended to the left or right [36]. A maximal

fractional repetition cannot be extended by a single letter to either the left or

right–exactly corresponding with the definition of a run [36]. As a short-hand,

runs have also been referred to as maximal repetitions [7, 35, 36]. Other terms

used to refer to runs include maximal periodicities [37] and m-repetitions [34].

Runs encode all repetitions in a string, and do so in the most efficient way

possible; they encode all the repetitions in a string in a linear amount of space

[36]. A given run represents t+ 1 maximal repetitions, starting at each position s

through s + t. Specifically, if x has the run (s, p, e, t), it must also have maximal

7
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repetitions (s, p, e), (s+1, p, e), . . . , (s+ t, p, e). This correspondence is illustrated

in Figure 1.2.

Run

Repetitions

Figure 1.3: An illustration of how a run represents t + 1 maximal repetitions. In
this case, a run with t = 3 corresponds to 4 maximal repetitions.

We introduce some terminology related to runs.

Definition 1.3: Given a run (s, p, e, t) in x, the leading square of the run is

the square (s, p, 2), given by the substring x[s..s+ 2p− 1] – the first two copies of

the generator.

The leading square has also been termed the square part [43, 42] and the

leftmost square [23].

Definition 1.4: Given a run (s, p, e, t) in x, the trailing square of the run is

the square (s+(e−2)p+t, p, 2), given by the substring x[s+(e−2)p+t..s+ep+t−1]

– the last 2p positions in the run.

The trailing square has also been termed the rightmost square [23].

Definition 1.5: [23] Given a run (s, p, e, t) in x, the core of the run is the

substring x[s+ (e− 2)p+ t..s+ 2p− 1], that is, the intersection of the leading and

trailing squares of the run.

If the leading and trailing squares do not overlap, by the definition of the

intersection, the core is empty. The core is the essential part of the run. If a

8
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symbol within the core is changed or the core is split, then the run is destroyed.

Conversely, if a symbol is changed outside of the run or the run is split in such

a way that the core is preserved, then the presence of a run is maintained. For

example, in the run ababab, the underlined ab in the middle is the core. If one

of these symbols is replaced, say, abcbab, the run is destroyed. Similarly, if a

new symbol is inserted in the middle of the core, abacbab, the run is destroyed.

Conversely, in the run abababab which has an empty core, we can change any

symbol, say abacabab, and a run still exists. Similarly, no matter where we split

the run with a new symbol, a run is maintained: abacbabab. When a run has no

core, changing a symbol of the run or splitting it may actually increase the number

of runs, if both the leading and trailing squares are undamaged, as in the case of

ababcabab.

We illustrate the concepts of leading and trailing squares in Figure 1.2,

along with an existent core.

Core

Run

Leading square

Trailing square

Figure 1.4: An illustration of a run with period 6, exponent 3, and tail 3. The
leading square, trailing square, and core are identified.

Let r(x) give the number of runs in a string x. The function ρ(n) gives the

maximum number of runs over all strings of length n, so ρ(n) = max{ r(x)|n(x) =

n }.

9
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1.3 Background

The number of primitively rooted maximal repetitions in a string of length n is

O(n log n). This is derived from the fact that there can only be logφ n primitively

rooted squares which start at a given position, and that there are n − 1 possible

starting positions for a square, showing there are O(n log n) primitively rooted

maximal repetitions over the length of the whole string [11].

This bound was shown to be tight through the investigation of finite prefixes

of the infinite Fibonacci string, a set of repetition-dense strings. See Section 1.7 for

the definition. Crochemore [6] shows that the Fibonacci strings contain Ω(n log n)

squares, and that all squares in a Fibonacci string are primitively rooted.

The notion of a runs was introduced by Main [37] and so named by Il-

iopoulos, Moore, and Smyth [31]. They are a generalization of repetitions, as one

run can represent multiple repetitions. They suggest that there could be a linear

algorithm to find all runs, and therefore a linear number of runs. This idea was

supported by the fact that Main showed there is a linear number of leftmost runs,

and Iliopoulos, Moore and Smyth showed that there were only a linear number of

runs in the repetition-dense Fibonacci strings.

Kolpakov and Kucherov [34, 35, 36] show that ρ(n) = O(n). However, their

approach does not give an idea of the constant factor involved [36]. The constant

factor is conjectured to be 1.

Conjecture 1.6: Maximum Number of Runs Conjecture [35] The maxi-

mum number of runs in a string is bounded by the length of the string. That is,

for all n ≥ 0, ρ(n) ≤ n.

Additional conjectures were also put forward regarding the properties of

10
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ρ(n) and run-maximal strings.

Conjecture 1.7: [28] The maximum number of runs increases by at most two

when the length of string increase by one: ρ(n) ≤ ρ(n− 1) + 2.

Conjecture 1.8: [45] The maximum number of runs ρ(n) is obtained by a cube-

free string on the binary alphabet for all n > 2.

Although it is widely believed that there is always a run-maximal string

on the binary alphabet, the cube-free condition does not hold. See Chapter 5 for

further details. In fact, though Kolpakov and Kucherov originally followed their

maximum number of runs conjecture with “at least for the binary alphabet”,

the binary-maximality conjecture is so widely accepted that this latter part has

generally been left out of the conjecture.

Franek and Yang [29] consider the property of the function ρ(n)
n

, and point

out that it may not be monotonic. Indeed, it follows that ρ(n)
n
− ρ(n−1)

n−1 < 0 exactly

when ρ(n) = ρ(n− 1).

Based on an analogy with the largest possible diameter ∆(d, n) of a d-

dimensional bounded polytope of n facets, in addition to considering the length

n of the string we began to take into account the number of distinct symbols d.

Let the function ρd(n) refer to the maximum number of runs over all (d, n)-strings

rather than all strings of length n, so ρd(n) = max{ r(x) | d(x) = d and n(x) =

n }. We propose that this second parameter is important to understanding the

nature of run-maximal strings.

Conjecture 1.9: [13] For all 2 ≤ d ≤ n, ρd(n) ≤ n− d.

It follows that ρd(n) ≤ n − d implies ρd(n) ≤ n − 2 for 2 ≤ d ≤ n. We

will show that the introduction of the second parameter d provides additional

11
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approaches which may be used to explore the conjecture. While this second pa-

rameter makes a minor change to the conjectured bound for small d, this may

prove fruitful in the search for an inductive proof. This is supported by the fact

that there are no known strings of length n with n runs, but there are infinitely

many (d, n)-strings with n − d runs. While most work has focused on bounding

the values of ρ(n), in this thesis we concentrate on the computation of exact ρd(n)

values–we want to capture the behaviour of n− ρd(n).

Multiple approaches have been explored in an attempt to prove ρ(n) ≤ n.

In the following sections, we first discuss the results of efforts to provide an upper

bound for the maximum number of runs in strings of sufficient length. We then

consider the search for extremely run-dense strings. Next we describe some of

the algorithms developed to find runs in strings. Then we consider some specific

classes of strings, and how many runs they may contain. Finally, we complete

the overview of the field by looking at some related work concerning other type

of repeats. At the end of this chapter, we provide an outline for the remainder of

the thesis.

Under the assumption that ρ2(n) = ρ(n), most computations have focused

on the binary strings. Kolpakov and Kucherov [34] give the values for ρ2(n) for

5 ≤ n ≤ 31. These values were confirmed by Franek [21] and extended to n = 35.

Kolpakov and Kucherov [33] have since found the values for ρ2(n) for n ≤ 60.

1.4 Tightening the upper bounds

While proof that ρ(n) ≤ n has not yet been established, some close asymptotic

bounds have been obtained. We present a brief overview of the results which have

12



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

lowered the upper bound to its current value.

As previously mentioned, the initial proof that the maximum number of

runs is linear relative to the length of the string by Kolpakov and Kucherov [36]

gave no explicit bounds on the constant factor. Giraud [30] showed that the limit

limn→∞
ρ(n)
n

exists, and that it cannot be reached. The first concrete constant for

an asymptotic bound was given by Rytter [42], who showed limn→∞
ρ(n)
n
≤ 5. To

achieve this bound, Rytter considers separately highly periodic runs (hp-runs) and

weakly periodic runs. Highly periodic runs are those runs with a generator which

is itself a run with period at most one quarter the length of the large generator.

Runs are then grouped as neighbours according to their starting positions.

Puglisi et al. [41] tighten the limit to limn→∞
ρ(n)
n
≤ 3.48. This is achieved

through a refinement of the approach used by Rytter. They consider θ highly

periodic runs (θ-hp-runs), a generalization of the hp-runs of Rytter. Again, the

θ-hp-runs and the other runs are handled separately. They note that if ρ(n) ≤ n,

then this proof approach will likely not be able to prove the conjecture, and that

the results of Kolpakov and Kucherov suggest there are no θ-hp runs in run-

maximal strings.

Rytter [43] later gave a bound of limn→∞
ρ(n)
n
≤ 3.44 through a further

refinement of his previous approach. However, a final note by Puglisi, Simpson,

and Smyth [41] indicates that a portion of Rytter’s Lemma 6 is incorrect, and thus

the final bound should actually be approximately 3.9.

Franek, Simpson, and Smyth [28] suggest an approach which can show that

limn→∞
ρ(n)
n
≤ 2. The approach relies on two unproven conjectures, either of which

is sufficient to achieve the bound.

Crochemore and Ilie [7] show that limn→∞
ρ(n)
n
≤ 1.6, and their presentation
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of this proof suggests how the bound could be improved to limn→∞
ρ(n)
n
≤ 1.18

or further. As with Rytter’s approach, they consider different classes of runs

separately. In this case, however, they look at runs with short periods, microruns,

and those with long periods, macroruns. The boundary for microruns was taken

to be p ≤ 9. While Rytter’s approach grouped runs which started close to each

other, Crochemore and Ilie group runs which have centres close to each other, that

is, similar values of s + p. The bound for the macroruns is based on a discrete

mathematics argument, while the microruns are amortized over a region of the

string through computation. This shows that for the microruns, limn→∞
ρp≤9(n)

n
≤

1 and for the macroruns, limn→∞
ρp>9(n)

n
≤ 0.6. Crochemore, Ilie, and Tinta

[9] remark that grouping runs by centres is somewhat counter-intuitive, as there

may be a linear number of runs with the same centre, compared to a logarithmic

number of runs with the same start. The computation-based microruns half of

this approach was confirmed and extended by an independent investigation by

Franek and Holub [23], who showed that when microruns are bounded by p ≤ 10,

limn→∞
ρp≤10(n)

n
≤ 1.

Crochemore, Ilie, and Tinta [9] improve upon this approach, showing that

limn→∞
ρ(n)
n
≤ 1.048. In order to do this, they increased the bound for microruns

to p ≤ 50. In addition, instead of amortizing such that at most k runs have centres

over k positions, they searched until they found at most k run centres over at least

k
b

positions. This value was obtained with b = 0.93. Crochemore, Ilie, and Tinta

[10] have since continued this computation with p ≤ 60 while keeping b ≤ 0.93.

They have been able to obtain a further improvement of limn→∞
ρ(n)
n
≤ 1.029.

14



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

1.5 Run-dense families of strings

In addition to the efforts to provide an upper bound on limn→∞
ρ(n)
n

, there has

been investigations into extremely run-dense families of strings.

Franek, Simpson, and Smyth [28] develop a method of constructing an

infinite family of strings xi such that limi→∞
r(xi)
n(xi)

= 3
1+
√
5
≈ 0.927. Therefore,

limn→∞
ρ(n)
n
> 0.927. This was further developed by Franek and Yang [29].

This lower bound was improved by Matsubara, Kusano, Ishino, Bannai,

and Shinohara [38]. They gave a string of length 184973, with 174697 runs,

demonstrating ρ(n) ≥ 0.9444459n for n = 184973. They then show that mul-

tiple copies of this run-dense string can be concatenated together, establishing

that limn→∞
ρ(n)
n
≥ 174719

184973
> 0.94456488. This approach has since been used by

Puglisi and Simpson [39] who give a seed string of length 29196442 which, when

manipulated a similar way, establishes limn→∞
ρ(n)
n
≥ 0.944575.

1.6 Algorithms to find all runs in a string

Main [37] gives an algorithm which finds all leftmost runs. The algorithm runs

in linear time with the assumption you have the Lempel-Ziv factorization of the

string, also called the s-factorization. The Lempel-Ziv factorization can be found

in linear time, as shown by Crochemore, Ilie, and Smyth [8]. The runs found

by Main’s algorithm correspond to the Class II runs as described by Smyth [46].

Class II runs are those runs which start and end in different factors of the Lempel-

Ziv factorization. Conversely, Class I runs start and end in the same factor. The

leftmost runs are a subset of the Class II runs in a string.

Kolpakov and Kucherov [35] give a linear time algorithm to compute all
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runs in a string, which they describe as a modification of Main’s algorithm. They

add an additional step to the algorithm in which they find all the Class I runs,

and then merge the results. Puglisi, Simpson, and Smyth [41] comment that while

it requires linear time, this algorithm “requires significant algorithmic machinery

and working memory, and is thus not suitable for very long (for instance, genome-

sized) strings.”

Crochemore’s partitioning algorithm [6], originally designed to find maxi-

mal repetitions has been modified to also find runs and primitively rooted distinct

squares [24, 25, 26]. While the modified Crochemore’s algorithm runs in O(n log n)

time, Crochemore’s approach lends itself more easily to parallelization compared

to the algorithm of Kolpakov and Kucherov.

The run-times of implementations of various run-finding algorithms were

compared by Franek and Fuller [22].

1.7 Special strings

Fibonacci strings are a class of strings known to be extremely repetition-dense.

These strings are often an example of the worst case scenario in the testing of

various pattern matching algorithms. As such, they have been well-studied with

respect to the repetitions and runs they contain.

The finite Fibonacci strings are defined recursively: F0 = b, F1 = a, and

Fn = Fn−1Fn−2 (n ≥ 2) [6, 34, 36]. The length of finite Fibonacci string Fn is fn,

the nth Fibonacci number [36]. Note that by the definition of the Fibonacci string

Fn, every shorter Fibonacci string Fi, 1 ≤ i < n is a prefix of Fn. Therefore, the

infinite Fibonacci string, F , also simply called the Fibonacci string, is the infinite
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string with every finite Fibonacci string Fn for n ≥ 1 as a prefix [31].

Fraenkel and Simpson [20] show that the number of primitively rooted

maximal repetitions in finite Fibonacci strings is proportional to n log n. Iliopou-

los, Moore, and Smyth [31] show the number of runs in finite Fibonacci strings is

proportional to n, and Kolpakov and Kucherov [34, 36] give an exact formula for

the number of runs in a Fibonacci string: r(Fn) = 2fn−2 − 3.

The Fibonacci string is a special case of Sturmian string. A Sturmian string

is an infinite string defined on a binary alphabet such that it contains exactly k+1

distinct substrings of length k. Franek, Karaman, and Smyth [27] show that the

maximum number of runs in any finite prefix of a Sturmian string is proportional

to its length.

1.8 Related investigations

Repetitions and runs are by no means the only type of repetitive structure which

have been investigated. Here we outline some of these different types of repeats

and give an overview of some known results.

1.8.1 Sum of exponents of runs

Let µ(n) = max{ sum of exponents of runs in x | n(x) = n }, that is, the maxi-

mum sum of the exponents of the runs in a string, considered over all strings of

length n.

Kolpakov and Kucherov [35] show that µ(n) is linear in order to prove

the linearity of the number of runs. Rytter [42] doesn’t give a constant for the

bound of the sum of exponents, remarking only that it is “not satisfactory”. He
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does comment that it appears that µ(n) ≤ 2n, and suggests that his proof that

limn→∞
ρ(n)
n
≤ 5 could be re-written to give an upper bound on the sum of ex-

ponents. Crochemore and Ilie [7] suggest that such an approach gives a bound

of around 25. Crochemore and Ilie [7] further show that limn→∞
µ(n)
n

< 5.6, and

suggest their proof could be improved to 2.9 or further. They also show that when

only considering those runs with maximum exponent 4, limn→∞
µe≤4(n)

n
≤ 2.

Conjecture 1.10: [42] The sum of exponents is at most 2n. That is, for all

n > 1, µ(n) ≤ 2n.

An area for future research involves extending the introduction of the num-

ber of distinct symbols parameter to the maximum sum of exponents of runs in a

string, and investigating the properties of µd(n).

1.8.2 Distinct squares

Let s(x) be the number of primitively rooted distinct squares in string x, and

σ(n) be the maximum s(x) over all x of length n

While it is known that the number of distinct squares in a string is at most

2n [19], it is conjectured to be at most n [36].

Conjecture 1.11: Maximum Number of Distinct Squares [36] The maxi-

mum number of primitively rooted distinct squares in a string of length n is limited

by n. That is, σ(n) ≤ n for all n > 0.

There are many similarities between the maximum number of runs and

the maximum number of distinct squares in strings, beyond just the conjectured

bound. Kolpakov and Kucherov [36] suggest that σ(n) ≤ ρ(n) for all n, based on
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experimental results. However, they found that in Fibonacci strings, the number

of runs is exactly one less than the number of distinct squares. They further

suggest that there isn’t a connection between the values of ρ(n) and σ(n), despite

them being similar, though they do wonder if the fact that r(Fn) = σ(Fn) − 1 is

a coincidence or “has some combinatorial explanation”.

The similarities between distinct symbols and runs is reinforced by the

work of Deza, Franek, and Jiang [15]. Just as we introduce the parameter d

and consider ρd(n), they have looked at the properties of the function σd(n), the

maximum number of distinct squares over all strings of length n with exactly

d distinct symbols. They suggest, much as we do for runs, that the d value is

integral to understanding the nature of the maximum number of distinct squares,

and propose that σd(n) ≤ n − d. We elaborate on some further interrelations

between run-maximality and square-maximality in Chapter 7.1.

Conjecture 1.12: [15] The maximum number of distinct primitively rooted

squares in a (d, n)-string is limited by n − d. That is, σd(n) ≤ n − d for all

2 ≤ d ≤ n.

1.8.3 Permuted repetitions

An Abelian square, introduced by Erdős [16], is a substring uv such that the

symbols of u can be permuted in such a way as to obtain v. That is, each symbol

in u must occur the same number of times in v, and vice versa. Thus, aababa is

an Abelian square, as both aab and aba have two a’s and one b. This concept is

extended by Cummings and Smyth [12] to weak repetitions u1u2. . .uk such that

each uiui+1 for 1 ≤ i < k is an Abelian square. Fici et al. [17] extend this concept

to the idea of an Abelian period, which adds a head and tail to the beginning and
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end of a weak repetition. The head is a substring such that each symbol which

appears in the head appears at most as often as it does in u1. The tail is defined

analogously. Constantinescu and Ilie [5] extend Fine and Wilf’s periodicity results

[18] from repetitions to Abelian periods.

1.9 Outline of thesis

Having presented an overview of the history of the problem and some related work,

we now proceed with the main body of the thesis. First we introduce the (d, n−d)-

table which we use to present the values of ρd(n). Here we include some basic

properties of the ρd(n) function, and show how these properties propagate values

through the table. Then we then proceed to discuss some structural properties

of run-maximal strings in the form of core vectors and r-coverings, and introduce

the concept of ρ−d (n)-density. Then we describe our computational approach to

finding run-maximal strings which we used to compute new ρd(n) values. Next we

describe additional structural insights which can be used to show ρd(n) ≤ n − d

holds for larger values of n and d, but cannot provide actual ρd(n) values. Further

work may be able to extend these restrictions such that it can be shown a counter-

example to the maximum number of runs conjecture can never exist. We conclude

with some opportunities for future work.
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Chapter 2

The (d, n− d)-table

We present the values of ρd(n) in a tabular form, which we term the (d, n − d)-

table, so named because the rows of the table are indexed by d, and the columns

are indexed by n−d. Each cell contains the corresponding ρd(n) value. This

presentation gives a way to see how properties of the ρd(n) function propagate

values through the table and to visualize recursions. We present the upper-left

corner of the (d, n− d)-table in Table 2.1.

The (d, n − d)-table for ρd(n) values was originally inspired by work on

the largest possible diameter ∆(d, n) of a d-dimensional bounded polytope with

n facets. The common presentation of ∆(d, n) values is in a table where again

the rows are indexed by d, and the columns are indexed by n − d. The Hirsch

conjecture states that ∆(d, n) ≤ n − d, though this has recently been disproved

by Santos [44] who found a counter-example with a 43-dimensional polytope with

86 facets. The use of the (d, n− d)-table for the presentation of ρd(n) values first

appeared in [13].

The benefit of the table comes from the easy visualization it gives of prop-
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Table 2.1: Values for ρd(n) with 1 ≤ d ≤ 15 and 1 ≤ n− d ≤ 15. For more values,
see [1].

n− d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
2 1 2 2 3 4 5 5 6 7 8 8 10 10 11 12 .
3 1 2 3 3 4 5 6 6 7 8 9 10 11 11 12 .
4 1 2 3 4 4 5 6 7 7 8 9 10 11 12 12 .
5 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 .
6 1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 .
7 1 2 3 4 5 6 7 7 8 9 10 10 11 12 13 .
8 1 2 3 4 5 6 7 8 8 9 10 11 11 12 13 .
9 1 2 3 4 5 6 7 8 9 9 10 11 12 12 13 .
10 1 2 3 4 5 6 7 8 9 10 10 11 12 13 13 .
11 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 .
12 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 .
13 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 .
14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 .
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .
16 . . . . . . . . . . . . . . . .

erties of ρd(n). While these properties exist independently of the presentation

style, the (d, n − d)-table provides a useful tool for discussion. We now proceed

to define some terminology of the (d, n − d)-table and present some properties it

exhibits.

When we move to the right or down, the values of the table are non-

decreasing.

Property 2.1: [13] For 2 ≤ d ≤ n, ρd(n) ≤ ρd(n+ 1). That is, values are

non-decreasing along a row from left to right.

Proof. Let x be a run-maximal (d, n)-string. Then x[1]x is a (d, n+ 1)-string and

ρd(n) = r(x) ≤ r(x[1]x) ≤ ρd(n+ 1).
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Property 2.2: [13] For 1 ≤ d ≤ n, ρd(n) ≤ ρd+1(n + 1). That is, values are

non-decreasing down a column.

Proof. Let x be a run-maximal (d, n)-string, and let z be a symbol such that

z /∈ A(x). Then xz is a (d + 1, n + 1)-string and ρd(n) = r(x) = r(xz) ≤

ρd+1(n+ 1).

While the value may remain constant in a single step to the right, it is

guaranteed to increase whenever the length is increased by at least two.

Property 2.3: [29] For 2 ≤ d ≤ n, ρd(n) < ρd(n + 2). That is, values are

increasing with a step of two to the right.

Proof. Let x be a run-maximal (d, n)-string, and let x[n] = a. Then xbb is a

(d, n+ 2)-string, and ρd(n) = r(x) < r(xbb) ≤ ρd(n+ 2).

Moving on a diagonal from the upper-left to the lower-right, the values are

increasing.

Property 2.4: [13] For 1 ≤ d ≤ n, ρd(n) < ρd+1(n + 2). That is, values are

increasing down a diagonal to the lower right.

Proof. Let x be a run-maximal (d, n)-string, and let z be a symbol such that

z /∈ A(x). Then xzz is a (d + 1, n + 2)-string and ρd(n) = r(x) < r(xzz) ≤

ρd+1(n+ 2).

The main diagonal is the diagonal of the (d, n− d)-table where n = 2d.

This is a critical region of the (d, n − d)-table. We can show that every value

below the main diagonal in the (d, n− d)-table is equal to the value on the main

diagonal directly above it. In other words, the values on and below the main

diagonal within a column are constant.
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Before we do this though, we must first introduce the concept of a safe

position.

Definition 2.5: A safe position in a string x is one which, when removed from

x, does not result in two runs being merged into one in the resulting new string.

A safe position does not ensure that the number of runs will not change

when that position is removed, only that no runs will be lost through being merged;

runs may still be destroyed by having a position in the core removed. Safe positions

are important in that they may be removed from a string while only affecting the

runs which contain them. When the position of a symbol is unambiguous, we

may thus refer to a safe symbol rather than to its position – for instance we can

talk about a safe singleton, or about the first member of a pair being safe, etc.

Conversely, an unsafe position is one which, when removed from its string,

causes at least two runs to merge. A result of this is that an unsafe singleton must

have a pair of identical squares immediately to the left and right of the unsafe

position, namely, x = x1uucuux2, where c is the unsafe position and u is a

non-empty string. A consequence of this is given in Lemma 2.6.

Lemma 2.6: [4] If a string x consists only of singletons, pairs, and 3-tuples,

then every position is safe.

Proof. By definition, a position is unsafe when a run is lost through two runs

merging when that position is removed. Therefore, if a position is unsafe, there is

a trailing square of some run immediately to its left with the same generator as

the leading square of a run immediately to its right. Any symbol in a square must

appear twice, and as there are two squares with the same generator, some symbol

must appear four times, a contradiction.
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In the following lemmas we will need to relabel all occurrences of a symbol

in a string or substring. Let xab denote the string x, in which all occurrences of

a are replaced by b, and vice versa. Note that permuting the symbols of a string

does not change the number of runs in the string, that is, r(x) = r(xab ), for any a

and b, no matter if a and b appear in x or not.

Lemma 2.7: [4] There exists a run-maximal (d, n)-string with no unsafe single-

tons for all 2 ≤ d ≤ n.

Proof. Let x be a run-maximal (d, n)-string. We will show that one of the following

four conditions must hold:

(i) x has no singletons, or

(ii) x has exactly one singleton which is safe, or

(iii) x has exactly one singleton which is unsafe, and there exists another run-

maximal (d, n)-string x′ such that x′ has no singletons, or

(iv) x has more than one singleton, all of which are safe.

In case (i), there are no singletons, and therefore no unsafe singletons.

Similarly, in case (ii), if there is only one singleton which is safe, there are no

unsafe singletons. Assume then that x has some unsafe singletons.

Consider case (iii) in which x has exactly one singleton, c, which is unsafe.

We show that we can perform an operation on x yielding a new string with no

singletons but the same number of runs. Due to the unsafe singleton, the string

must have the form x = u[avav]c[avav]w, where a ∈ A(x) − {c}. We have

denoted the squares to either side of the singleton with square brackets for clarity.
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Let x′ = uavav(cavavw)ac = uavavacvaccv
a
cw

a
c . Then, x′ is still a (d, n)-string,

and r(x′) ≥ r(x), so x′ is run-maximal. There are now two instances of the

symbol c, so it is no longer a singleton. The only symbol which occurs fewer times

in x′ than in x is a, and it still appears at least twice in x′.

Finally, consider case (iv), that x has at least 2 singletons. We will prove

that all the singletons in the string must be safe by contradiction. Assume x has

singletons c1 and c2, of which at least one is unsafe. Without loss of generality, we

can assume c1 is unsafe and occurs before c2. Let us break the string into three

parts to simplify the discussion: x = x1c1x2c2x3. As c1 is unsafe, we have x1 =

u[avav], and x2 = [avav]w. We create a new string x′ = x1x2
a
c1
c2c2x3. No runs

were lost through merging in the concatenation of x1 and x2
a
c1

= c1v
a
c1
c1v

a
c1
wa
c1

as

c1 does not appear in x1. As no runs cross the original occurrence of c2, no runs are

damaged by the insertion of a second copy of c2. No new symbols were introduced,

nor were any symbols lost, so d(x) = d(x′). However, r(x) = r(x′)− 1, as a new

run c2c2 was introduced, contradicting the choice of x as a run-maximal string.

Therefore, if x has more than one singleton, they must all be safe.

We are now in a position to show that values are constant in a column

under the main diagonal.

Property 2.8: [13] We have ρd(n) = ρn−d(2n− 2d) for 2 ≤ d ≤ n < 2d.

Proof. Let x be a run-maximal (d, n)-string, where 2 ≤ d ≤ n < 2d. Since n < 2d,

x must have a singleton. By Lemma 2.7 we can assume that singleton is safe.

Therefore, we can remove this safe singleton, yielding a new (d−1, n−1)-string y

and so ρd(n) = r(x) = r(y) ≤ ρd−1(n− 1). By Property 2.2, ρd(n) ≤ ρd+1(n+ 1)

for 2 ≤ d ≤ n, so ρd−1(n− 1) = ρd(n).
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We can combine the fact that columns are constant below the diagonal,

Property 2.8, with the fact that columns are non-decreasing as you go down,

Property 2.2, to show that the maximum value in a column can be found on the

main diagonal.

Property 2.9: [13] We have, ρd(2d) = maxε>−d{ ρd+ε(2d + ε) }. That is, the

maximum value in a column is found on the main diagonal.

Proof. The proof follows directly from Property 2.8 and Property 2.2.

A corollary is that if there is a counter-example to the conjecture that

ρd(n) ≤ n− d, then there is a counter-example on the main diagonal.

Corollary 2.10: If ρd(n) > n− d for some 2 ≤ d ≤ n, then there exists some d0

such that ρd0(2d0) > d0.

We refer to the propagation of a counter-example to the main diagonal as

being “pushed up” or “pushed down”. Let a column i of the (d, n−d)-table be the

column containing the values ρi+ε(2i + ε) for ε > −i. Therefore we can consider

a column i to be a counter-example to the conjecture if ρi(2i) > i. To say that

column i satisfies the conjecture that ρd(n) ≤ n− d means that ρi(2i) = i, and so

by Property 2.9, every ρi+ε(2i+ ε) ≤ i for ε > −i.

If a given column of the (d, n − d) table were to prove to violate the con-

jecture that ρd(n) ≤ n− d, so would all subsequent columns.

Property 2.11: If column i of the (d, n − d)-table has ρi(2i) > i, every column

i′ > i also has ρi′(2i
′) > i′.

Proof. If column i is a counter-example, then ρi(2i) > i. By Property 2.4,

ρi+1(2(i+ 1)) ≥ ρi(2i) + 1 > i+ 1. By induction, this holds for every i′ > i.

27



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

We extend Property 2.8 to bound the behaviour of the entries in the im-

mediate neighbourhood above the main diagonal in the (d, n− d) table. Proposi-

tion 2.12 establishes that the difference between ρd(2d) and ρd−1(2d−1) is at most

1. In addition, the difference is 1 if and only if every run-maximal (d, 2d)-string

consists entirely of pairs; otherwise, the difference is 0.

Note that in Propositions 2.12 and 2.13, the symbol z is taken to represent

the “last” symbol in the string, and is not meant to imply that the strings have

d = 26.

Proposition 2.12: [4] We have ρd(2d) ≤ ρd−1(2d− 1) + 1 for d ≥ 3.

Proof. Let x be a run-maximal (d, 2d)-string, and assume by Lemma 2.7 that it

has no unsafe singletons. Consider two cases: x has a singleton and x does not

have a singleton.

(i) Assume x has a singleton. Since it is safe, we can remove it and form

a new (d − 1, 2d − 1)-string y without destroying any runs. Therefore, ρd(2d) =

r(x) ≤ r(y) ≤ ρd−1(2d − 1), and as by Property 2.2 ρd−1(2d − 1) ≤ ρd(2d), we

have ρd−1(2d− 1) = ρd(2d) when there exists a run-maximal (d, 2d)-string with a

singleton.

(ii) If x does not have a singleton, then it consists entirely of pairs. As each

pair can be in at most one run, the total runs are maximized by adjacent pairs,

and so r(x) = d with x = aabbcc . . . zz. We may transmute the string by changing

x[2] to a b and removing x[1], giving the (d−1, 2d−1)-string y = bbbcc . . . zz and

ρd(2d) = r(x) = r(y) + 1 ≤ ρd−1(2d− 1) + 1.

We have seen that the difference between the value on the main diagonal

and the first value above the main diagonal is at most 1. Proposition 2.13 estab-
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lishes that the three entries immediately above the main diagonal are identical.

Proposition 2.13: [4] We have ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) for

d ≥ 5.

Proof. We prove this equality in two stages: (i) showing ρd−1(2d−1) = ρd−2(2d−

2), and (ii) showing ρd−2(2d− 2) = ρd−3(2d− 3).

(i) Let x be a run-maximal (d−1, 2d−1)-string. By Lemma 2.7 we can assume

that if x has a singleton, it is safe. Therefore, if x has a singleton, we can

remove it obtaining a new (d− 2, 2d− 2)-string y such that ρd−1(2d− 1) =

r(x) ≤ r(y) ≤ ρd−2(2d−2). As ρd−2(2d−2) ≤ ρd−1(2d−1) by Property 2.2,

we know ρd−1(2d− 1) = ρd−2(2d− 2).

Otherwise, if x has no singletons, it consists of pairs and one 3-tuple, and

thus, by Lemma 2.6, all positions are safe. Each pair can be involved in

at most one run, and a 3-tuple in two runs. However, there is no way in

which to use a pair to break up a 3-tuple without “using up” the run for that

square. For example, the substring aabab involves the 3-tuple in two runs,

but one of those is the same run that involves the pair of b’s. Therefore, we

can maximize the number of runs in the string with one of three structures:

x1 = aaabbcc . . . zz, x2 = aababcc . . . zz, or x3 = ababbcc . . . zz. The string

x1 may be transmuted to form the string ccbbcc . . . zz, a (d−2, 2d−2)-string,

without destroying any runs. It follows that ρd−1(2d − 1) = r(x) ≤ r(y) ≤

ρd−2(2d− 2), and so ρd−1(2d− 1) = ρd−2(2d− 2).

(ii) Let x be a run-maximal (d − 2, 2d − 2)-string. Again, if x has a singleton,

we can assume by Lemma 2.7 that it is safe. As it is safe, we can then form
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a (d − 3, 2d − 3)-string y by removing the singleton, and ρd−2(2d − 2) =

r(x) ≤ r(y) ≤ ρd−3(2d− 3), so ρd−2(2d− 2) = ρd−3(2d− 3).

Therefore we consider the case that x does not have a singleton. We show

then that r(x) = d− 1. Consider the two cases:

(a) The string x consists of two 3-tuples and several pairs. The most runs

which may be obtained in such a string, after grouping the pairs at the

end of the string, is through the arrangement aababbccdd . . . zz. In this

case, there are d− 4 runs from the pairs, and 3 runs from the 3-tuples,

giving a total of d− 1 runs.

(b) The string x consists of a quadruple and several pairs. There are

three structures which yield a run-maximal string,assuming all pairs

but the b’s have been grouped at the end: x1 = aabbaaccdd . . . zz,

x2 = aabaabccdd . . . zz, and x3 = abbabbccdd . . . zz. In each case, there

are d− 4 runs involving symbols c through z, and 3 runs involving the

symbols a and b, again giving a total of d− 1 runs.
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Chapter 3

Structural properties of

run-maximal strings

Before we develop the structural properties of run-maximal strings, we will first

explain why structural properties are desirable and outline their eventual use in

order to provide some context. Our aim is to calculate ρd(n) values for as large

values of d and n as possible. If we were to consider every (d, n)-string in order

to find the maximum, we are faced with an exponentially-growing pool to search.

Therefore, as much as possible, we aim to avoid generating strings that cannot be

run-maximal. Furthermore, once we have found a (d, n)-string with r runs in it,

we no longer need to search for strings with r runs, but only those that could have

r + 1 runs.

Run-maximal strings are difficult to generate for two reasons. First, there

is little to be gained from iterative efforts to find run-maximal strings, at least on

the traditional binary case. That is, knowing all the run-maximal (2, n′)-strings

for n′ < n typically provides little insight into the run-maximal (2, n)-strings.
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Second, run-maximal strings do not demonstrate readily apparent structures. In

this chapter, we present some structural properties of run-maximal strings. In the

Chapter 4, we illustrate how these structures may be exploited in order to speed

the generation of run-maximal strings.

Definition 3.1: [2] Let ki(x) be the number of cores in x containing the position

i. Given a string x, the vector k(x) = [k1(x), . . . , kn(x)] is referred to as the core

vector of x.

If we want to build strings that are run-dense, it makes sense that we would

want to create strings in which every position is in the core of some run. Such a

core vector, in which every element ki(x) > 0 will be termed a strictly positive

core vector. However, building such a string is not a straight-forward matter.

Assume that we have partially constructed a string such that every position is in

the core of a run. As we extend the string, we may extend one of the runs, thus

shrinking its core. This can be illustrated by the partial string x1 = abab in which

every position is in the core of a run. If the next symbol added is another a, then

x2 = ababa in which x2[1] is not in the core of a run. In other cases, extending an

existing run may result in a position still being in a core. Consider x1 = aabaab

which is again extended by a single a. The resulting string x2 = aabaaba still has

position 1 in the core of a run, though not two as it was previously.

We therefore introduce the r-cover as a generalization of a strictly positive

core vector. An r-cover is a specific set of leading squares of the runs in a string.

Definition 3.2: R-cover [23] An r-cover of a string x is a sequence of primi-

tively rooted squares { Si = (si, pi, 2) | 1 ≤ i ≤ m } so that

(1) no Si, 1 ≤ i ≤ m, is left-shiftable;
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(2) si < si+1 ≤ si+2pi < si+1+2pi+1 for any 1 ≤ i < m, that is, two consecutive

squares are either adjacent or overlap without one containing the other;

(3)
⋃

1≤i≤m

Si = x;

(4) for any run R = (s, p, e, t) of x there is an Si with 1 ≤ i ≤ m containing the

leading square of the run R, that is, si ≤ s < s+ 2p ≤ si + 2pi.

A string that has an r-cover is referred to as r-covered. It follows that a string

with a strictly positive core vector has an r-cover.

Lemma 3.3: If a run-maximal (d, n)-string has a strictly positive core vector,

then the string has an r-cover [2].

Proof. We build an r-cover by induction:

Since k1(x) 6= 0, position 1 is in at least one core, and so there must be at

least one run starting at position 1. Among all runs starting at position 1, set S1

to the leading square of the run with the largest period.

Let the inductive hypothesis be that we have built the r-cover up to element

t: {Si = (si, pi, 2) | 1 ≤ i ≤ t}. If
⋃

1≤i≤t Si = x, we are done. Otherwise⋃
1≤i≤t Si = x[1..st + 2pt − 1]. Since kst+2pt(x) 6= 0, there is at least one run

(s, p, 2) in x such that s ≤ st + 2pt ≤ s+2p−1. From all such runs chose the set

of runs with the leftmost starting position, and among them choose the one with

the largest period. Set St+1 to the leading square of the chosen run.

One can verify that all the conditions of Definition 3.2 are satisfied and

that we have built an r-cover of x.

The approach used in this proof can be extended to find an r-cover for any

string, if it exists. That is, first choose the run that starts at position 1 with
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the largest period. Then iteratively choose the next r-cover element as outlined

in the proof of Lemma 3.3. If at any point before the string is covered there is

no valid run to choose, then the string does not have an r-cover [3]. We give the

pseudocode for this in Algorithm 1.

Algorithm 1: Find the r-cover of x, if it exists.

begin Find r-cover of x
s1 ← 1, p1 ← 0
foreach run (s, p, e, t) in x do

if s = 1 and p > p1 then
p1 ← p

if p1 = 0 then
return failure

m← 1, uncovered← s1 + 2p1
while uncovered ≤ n do

m← m+ 1, sm ← n+ 1, pm ← 0
foreach run (s, p, e, t) in x do

if s ≤ uncovered and s+ 2p > uncovered and s ≤ sm then
if p > pm then

sm ← s, pm ← p

if sm > n then
return failure

uncovered← sm + 2pm

return { (s1, p1, 2), . . . (sm, pm, 2) }

A nice property of r-covers is that for a given string, if the string has an

r-cover, then that r-cover is unique.

Lemma 3.4: [2] The r-cover of an r-covered string is unique.

Proof. Let us assume that we have two different r-covers of x, { Si | 1 ≤ i ≤ m }

and { S ′j | 1 ≤ j ≤ k }. We shall prove by induction that they are identical.
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By Definition 3.2 (4), S1 is a substring of S ′1 and, by the same argument,

S ′1 is a substring of S1, and thus S1 = S ′1. Let the induction hypothesis be

Si = S ′i for 1 ≤ i ≤ t. If
⋃

1≤i≤t Si = x, we have t = m = k and we are done.

Otherwise consider St+1. By Definition 3.2 (4), there is S ′v so that St+1 is a

substring of S ′v and v > t. We need to show that v = t+1. If not, then S ′t+1

is a substring of
⋃

1≤i≤t+1 Si as otherwise S ′t+1 would contain St+1, contradicting

v 6= t + 1. Since S ′t+1 is not a substring of
⋃

1≤i≤t Si, then S ′t+1 is a substring

of St+1, which in turn is a substring of S ′v, a contradiction. Therefore, St+1 is a

substring of S ′t+1. Similarly, S ′t+1 is a substring of St+1 and so St+1 = S ′t+1, which

completes the induction.

If a string does not have an r-cover, then it must have at last one weak

point.

Definition 3.5: [3] A weak point is a position in a string which is not in the

leading square of any run.

When considering run-maximal strings of length n that are run-maximal

over all alphabets, it can be shown that they contain at most one weak point.

Lemma 3.6: [4] Let x be a run-maximal n-string. Then x has at most one weak

point.

Proof. Assume that the run-maximal n-string x has at least two weak points at

positions i and j, and that i < j. The string has the form x = x1x[i]x2x[j]x3,

where x1 = x[1..i − 1], x2 = x[i + 1..j − 1], and x3 = x[j + 1..n]. Let c1 and c2

be two distinct symbols that do not occur in x; c1 6= c2, c1 /∈ A(x), c2 /∈ A(x). If

x2 = ε, then we have r(x1c1c1x3) = r(x) + 1, contradicting the run-maximality
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of x. Otherwise, x2 is non-empty. In that case, let x̃2 be x2 with every instance

of x[i + 1] replaced with c1 and every instance of x[j − 1] replaced with c2. If

x[i + 1] = x[j − 1], then every instance of the symbol will be replaced with c2.

Then r(x1x̃2x3c2c2) = r(x) + 1, again contradicting the run-maximality of x.

Therefore, every string of length n which is run-maximal over all alphabets has at

most one weak point.

Lemma 3.6 is the best bound possible, as there are multiple run-maximal

strings which contain a weak point. The only known case of a run-maximal string

with a weak point occurring at a position other than 1 or n is when n = 5. The

run-maximal strings aabaa and aaabb both have a weak point at position 3. No

run-maximal (2, n)-strings for 6 ≤ n ≤ 66 contain an interior weak point.

As the proof of Lemma 3.6 relies on changing the alphabet, it cannot be

directly applied to run-maximal (d, n)-strings. However, we can bound the value

of ρd(n) if some run-maximal (d, n)-string has a weak point.

Lemma 3.7: [2] If a run-maximal (d, n)-string x does not have an r-cover, then

ρd(n) ≤ ρd(n1) + ρd(n2) for some n1, n2 ≥ 0 such that n1 + n2 = n−1.

Proof. Since x does not have an r-cover, there is a position i that is not in the

core of any run. Let x1 = x[1..i−1] and x2 = x[i+1..n], with lengths n1 and n2

respectively. We consider two cases:

(a) If A(x) = A(x1) = A(x2), then ρd(n) = r(x) ≤ r(x1) + r(x2) ≤ ρd(n1) +

ρd(n2).

(b) If A(x1) 6= A(x2), then without loss of generality, assume there is c ∈

A(x1) r A(x2). Permute the alphabet of x1 creating a new string x̃1, so
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that x̃1[i−1] = c. Then x̃1 and x2 can be concatenated into a string of length

n−1 without merging any runs. Therefore, ρd(n) = r(x) ≤ r(x̃1)+ r(x2) =

r(x1) + r(x2) ≤ ρd(n−1) ≤ ρd(n), and so ρd(n) = ρd(n−1).

Therefore, with the convention that ρd(0) = 0, ρd(n) ≤ ρd(n1) + ρd(n2) for some

n1, n2 ≥ 0 such that n1 + n2 = n−1.

A basic property of r-covered strings is that they cannot contain a singleton.

Lemma 3.8: [2] Every r-covered string is singleton-free.

Proof. Let { Sj | 1 ≤ j ≤ m } be the r-cover of x. For any 1 ≤ i ≤ n, x[i] ∈ St

for some 1 ≤ t ≤ m by Definition 3.2 (3). Since St is a square, the symbol x[i]

occurs in x at least twice.

When considering a string that has a singleton though, we can provide a

bound on the maximum number of runs it can contain.

Lemma 3.9: [2] If a run-maximal (d, n)-string has a singleton, then either

ρd(n) = ρd−1(n−1) or ρd(n) = ρd(n−1).

Proof. For a given run-maximal (d, n)-string x there are three cases:

(a) The string x has a singleton at the end or the beginning. If it is at the

end, then ρd(n) = r(x) = r(x[1..n−1]) ≤ ρd−1(n−1), as x[1..n−1] is a

(d−1, n−1)-string. It follows that ρd(n) = ρd−1(n−1). If the singleton is at

the beginning, the proof is identical except for taking the substring x[2..n].

(b) The string x has a singleton in the middle at a position j and the alphabets of

the two parts are different; that is, there is c so that either c ∈ A(x[1..j−1])r
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A(x[j+1..n]) or c ∈ A(x[j+1..n]) r A(x[1..j−1]). If c ∈ A(x[j+1..n]) r

A(x[1..j−1]), then create x1 by permuting the alphabet of x[j+1..n] so

that c moves to the position j+1. This will not affect the number of runs

so r(x) = r(x1). Create x2 by moving the singleton x[j] to the end of the

string. Again, the number of runs will not be affected so r(x1) = r(x2).

Then y = x2[1..n−1] is a (d−1, n−1)-string and ρd(n) = r(x) = r(x2) =

r(y) ≤ ρd−1(n−1) ≤ ρd(n). The argument is similar if c ∈ A(x[1..j−1]) r

A(x[j+1..n]).

(c) The string x has a singleton c in the middle at a position j and the alphabets

of the two parts are the same; that is, A(x[j+1..n]) = A(x[1..j−1]) =

A(x)−{c}. Replace all occurrences of x[j+1] in x[j+1..n] with the singleton

c, producing x1. This will not affect any runs so r(x) = r(x1). Moreover,

A(x) = A(x1). Create a string x2 by removing x1[j]. Since no runs are

merged, r(x1) = r(x2). Since A(x) = A(x2), x2 is a (d, n−1)-string and

thus ρd(n) = r(x) = r(x2) ≤ ρd(n−1) ≤ ρd(n).

Therefore, ρd(n) = ρd−1(n−1) or ρd(n) = ρd(n−1) when a run-maximal string has

a singleton.

A useful result related to Lemma 3.9 is that when a run-maximal (d, n)-

string contains singletons, we can assume that every singleton is grouped together

at the end of the string.

Lemma 3.10: If there is a run-maximal (d, n)-string with singletons, then there

is a run-maximal (d, n)-string with all the singletons at the end of the string.

Proof. Let x have a singleton at position i and a symbol at position j, i < j ≤ n,

that is not a singleton. We show that we can transform this string either to remove

38



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

the singleton, or to move it to the end of the string without affecting the number

of runs. Let x = x1x[i]x2x3, where x3 is composed entirely of singletons and

∀c ∈ A(x3), c /∈ A(x1x2). That is, x3 is the substring composed of singletons

that are already grouped at the end of the string. There are three cases to consider:

(a) If i = 1, so the singleton is at the beginning of the string, then x1 = ε. The

singleton cannot be involved in any runs and is safe, so it can be moved to

the end without affecting the number of runs.

(b) If x has a singleton in the middle and A(x1) 6= A(x2), then as in case

(b) of the proof of Lemma 3.9 let us assume without loss of generality that

there exists a c ∈ A(x2) r A(x1). We permute the symbols of x2 such

that x[i + 1] = c yielding x̃2. We can then obtain y = x1x̃2x3x[i], and

r(y) = r(x).

(c) If x has a singleton in the middle and A(x1) = A(x2), then we are able to

remove the singleton from the string. Create x̃2 from x2 such that every

instance of x[i+ 1] is replaced with x[i]. Then we have y = x1x[i]x̃2x3. If

r(y) > r(x), we contradict the choice of x as a run-maximal (d, n)-string.

Otherwise, r(y) = r(x).

Even if a string does have an r-cover, the structure of that r-cover may

impose limits on the maximum number of runs in that string. We divide r-covers

into two distinct sets. In the first set, termed adjacent r-covers, we have the

r-covers in which a pair of subsequent squares are touching each other, but not

overlapping. That is, for some 1 ≤ i < m, si+1 = si+2pi. The squares Si and Si+1
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are the adjacent squares. The remaining r-covers will be termed overlapping

r-covers. They are the r-covers that for every 1 ≤ i < m, si+1 < si + 2pi.

Lemma 3.11: [2] If there is a run-maximal (d, n)-string x with an adjacent r-

cover, then ρd(n) ≤ ρd1(n1) +ρd2(n2) for some 1 ≤ d1, d2 ≤ d and some n1, n2 ≥ 0

such that n1 + n2 = n.

Proof. Let {Si : 1 ≤ i ≤ m} be the r-cover of x. Let Sj = (sj, pj, 2) and Sj+1 =

(sj+1, pj+1, 2) be two adjacent squares of the r-cover, such that sj+1 = sj + 2pj.

Let x1 =
⋃

1≤i≤j

Si and x2 =
⋃

j<i≤m

Si. Then ρd(n) = r(x) ≤ r(x1) + r(x2) ≤

ρd(x1)(n(x1)) + ρd(x2)(n(x2)).

Strictly positive core vectors provide one approach to obtaining strings with

a certain run density, and now we introduce another. Let us assume that we have

some lower bound for ρd(n), given by ρ−d (n). We are attempting to search for

(d, n)-strings which contain more than ρ−d (n) runs.

Definition 3.12: [2] A (d, n)-string x is ρ−d (n)-dense, if its core vector k(x) sat-

isfies ki(x) > ρ−d (n)−r(x[1..i−1])−mi for 1 ≤ i ≤ n, where mi = max { ρd2(n−i) |

d−d1 ≤ d2 ≤ min(n−i, d) } and d1 = d(x[1..i−1]).

Lemma 3.13: If a (d, n)-string x is not ρ−d (n)-dense, then r(x) ≤ ρ−d (n).

Proof. For any string x, r(x) ≤ r(x[1..i−1]) + r(x[i+1..n]) + ki(x) for all 1 ≤

i ≤ n. Note that in most situations r(x) = r(x[1..i−1]) + r(x[i+1..n]) + ki(x),

except when the core of some run containing i is empty. Such a run is split

into two runs: one in x[1..i−1] and the other in x[i+1..n]. If x is not ρ−d (n)-

dense, then for some i0, ki0(x) ≤ ρ−d (n) − r(x[1..i0−1]) − mi0 . Since r(x) ≤

r(x[1..i0−1]) + r(x[i0+1..n]) + ki0(x) ≤ r(x[1..i0−1]) +mi0 + ki0(x), then r(x) ≤

r(x[1..i0−1]) +mi0 + ρ−d (n)− r(x[1..i0−1])−mi0 = ρ−d (n).
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We combine the concepts of ρ−d (n)-density and r-covers. If we have a string,

and we know its r-cover, if we extend that string in such a way that the r-cover is

maintained, most of the values of the core vector cannot increase.

Lemma 3.14: Let x be a string with the r-cover { Si | 1 ≤ i ≤ m }. Let x′ = xy

be a string with the r-cover { S ′i | 1 ≤ i ≤ m′ }. If Si = S ′i for 1 ≤ i ≤ m, then

ki(x) ≤ ki(x
′) for 1 ≤ i ≤ sm.

Proof. Assume that ki(x) > ki(x
′) for some 1 ≤ i ≤ sm. This implies that there

exists a run R = (s, p, e, t) in x′ such that i is in the core of R, s < sm, and

s + 2p > sm + 2pm. Therefore, Sm ⊂ (s, p, 2), which violates the definition of an

r-cover. If we add (s, p, 2) to the r-cover { S ′i }, it contradicts our condition that

Si = S ′i for 1 ≤ i ≤ m. Therefore, the lemma holds.

Let us assume that we can extend a string without modifying the existing

r-cover. Then most of the values of the core vector are non-increasing as the string

is extended. Therefore, if a string is not ρ−d (n)-dense in a position before the start

of the last element in its r-cover, then no extension to the string will allow it to

exceed ρ−d (n) runs.

We now consider how these structural insights can be used to speed the

computation of ρd(n) values, and the search for run-maximal strings.
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Chapter 4

Computational approaches

Generating all (d, n)-strings in order to find ρd(n) quickly becomes computation-

ally infeasible. Considering only the binary strings, each time the length is in-

creased by a single position, there are twice as many strings to consider. The

computational time more than doubles, as the run-counting algorithm takes longer

as the strings increase in length. The symbols of the string are immaterial; only the

pattern of their appearance matters. We would need to generate every pattern-

distinct string, as described by Moore, Smyth, and Miller [40] in order to test

every string. Moore, Smyth, and Miller show that there are
{
n
d

}
pattern-distinct

strings of length n with d distinct symbols, a Stirling number of the second kind.

We exploit the structural properties of run-maximal strings in order to drastically

reduce the search space.

We determine the values of ρd(n) by an iterative process. In Figure 4, we

show how all strings may be divided into three partitions. The maximum number

of runs in strings which are not r-covered and those with adjacent r-covers can be

bounded based on the properties of those strings and previously computed values
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all strings

overlapping r−coveradjacent r−cover

r−coverednot r−covered

Figure 4.1: An illustration of how all strings may be divided into three partitions.

of ρd(n). We have an initial lower bound from Property 2.1 of ρ−d (n) = ρd(n− 1),

but we attempt to improve upon this bound through a search of a restricted class

of (d, n)-strings in order to establish a lower bound ρ−d (n). Finally, we perform an

exhaustive search for any (d, n)-strings which may have more than ρ−d (n) runs. If

no such string is found, we have established that ρd(n) = ρ−d (n). Otherwise, we

update our lower bound and continue the search.

First we will discuss how the maximum number of runs in strings without

r-covers or with adjacent r-covers can be computed using previously known ρd(n)

values. Next, we skip ahead to the algorithm used to search for (d, n)-strings with

more than ρ−d (n) runs. Then we explain the various heuristics which were added

to the search algorithm in order to quickly determine a sufficient lower bound.
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4.1 Strings without r-covers or with adjacent r-

covers

In computing the value of ρd(n), we will assume that for every d′ ≤ d and n′ < n,

we already know ρd′(n
′).

Based on Lemma 3.7, we can establish an upper bound on the maximum

number of runs in any string without an r-cover from previously known values. We

iterate through every pair of values n1 and n2 such that n1 + n2 = n− 1, and find

the maximum values of ρd(n1) + ρd(n2). This algorithm is given in Algorithm 2.

Algorithm 2: The algorithm for finding the maximum number of runs in a
string of length n with d distinct symbols which does not have an r-cover.

begin Find the maximum number of runs in a string without a r-cover
maximum← 0, n1 = 0, n2 ← n− 1− n1

while n1 ≤ n2 do
if ρd(n1) + ρd(n2) > maximum then

maximum← ρd(n1) + ρd(n2)

n1 ← n1 + 1, n2 ← n− 1− n1

return maximum

For the strings which have an adjacent r-cover, there are additional cases

to consider, but once again we can find the maximum possible number of runs

based on the previously calculated values. Algorithm 3 is based on Lemma 3.11.

In practice, these algorithms typically do not yield run-maximal strings

except for some cases where n1 = 1 or 2. These two cases are guaranteed to yield

actual strings which achieve this value (corresponding to Properties 2.1 and 2.3),

but if the maximum is reached for some n1 > 3, then it must be confirmed that

the corresponding candidate strings can actually be concatenated without merging

runs.
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Algorithm 3: The algorithm for finding the maximum number of runs in a
string of length n with d distinct symbols which has an adjacent r-cover.

begin Find the maximum number of runs in a string with an adjacent
r-cover

maximum← 0, n1 = 0, n2 ← n− n1

while n1 ≤ n2 do
for d1 ← 1 . . . d do

for d2 ← 1 . . . d do
if ρd1(n1) + ρd2(n2) > maximum then

maximum← ρd1(n1) + ρd2(n2)

n1 ← n1 + 1, n2 ← n− n1

return maximum

4.2 Searching for strings with more than ρ−d (n)

runs

As previously mentioned, we now assume that we have obtained a lower bound

ρ−d (n), and must show that there is no (d, n)-string with more than ρ−d (n) runs.

While Property 2.1 provides a lower bound of ρ−d (n) = ρd(n− 1), we will outline

in Section 4.3 how we can drastically reduce the search space while searching for a

string with more runs than this initial lower bound. The higher the lower bound

we are able to obtain, the faster the search for strings with ρ−d (n) + 1 runs.

Having considered the strings without r-covers and those with adjacent r-

covers in Section 4.1, we only need to consider strings with overlapping r-covers.

Furthermore, as we have already found a string with ρ−d (n) runs, we need only

search for those strings with at least ρ−d (n) + 1 runs. If no such strings are found,

we have established that the current lower bound gives the correct value for ρd(n).

In order to generate only strings with r-covers, we generate those strings
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directly from their r-covers. The first square must start at position 1, and must

have period at most n
2
. We must consider every pattern-distinct generator of each

length. We then iteratively add another square to the r-cover, until the desired

length is reached.

Each time a new square is added, we must consider every starting position

within the previous square. We must also consider each period such that the square

extends past the end of the previous square. For each such pair of starting position

and period, one of two cases exists: either the generator is completely determined

by the portion of the string which was already set, or we must consider every

possible way to complete the generator.

After each square is added, there are some additional checks which must

be performed. We must ensure that the string is the leading square of a run; that

is, that it is not left-shiftable. The generator of the new string must be primitive.

Finally, we must ensure that no additional leading square was introduced which

violates the definition of the r-cover.

When the string is complete, we check the number of distinct symbols the

string contains and count the number of runs. If we have found a string with the

desired number of runs, we output it. We give the pseudocode for this approach

in Algorithm 4.

While generating only r-covered strings results in a significant reduction in

the search space, we can make further improvements by requiring that the strings

be ρ−d (n)-dense. Recall the interaction between r-covers and core vectors described

in Lemma 3.14. We use ρ−d (n)-density to limit the starting positions of squares St

for t > 1, and to check for the presence of shrinking cores as the string is extended.

When adding the square St we originally consider every starting value st

46



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

Algorithm 4: Algorithm to generate all strings with overlapping r-covers.

begin Set the first square, S1:
s1 ← 1
for p1 ← 1 . . . bn

2
c do

foreach primitive string g of length p1 do
x[1..2p1 − 1]← gg
addSquare(2)

begin addSquare(m)
for sm ← sm−1+1 . . . sm−1 + 2pm−1 − 1 do

for pm ← 1 . . . n−sm+1
2

do
if sm + pm ≤ sm−1 + 2pm−1 then

if the squaring of the generator does not conflict with the
existing string then

square the generator
finishSquare(m)
remove the square

else
foreach completion of the generator do

square the generator
finishSquare(m)
remove the square

begin finishSquare(m)
if x[sm − 1] 6= x[sm + pm − 1] then (the square is not left-shiftable)

if x[sm..sm + 2pm − 1] is primitive then
if no run (s, p, e, t) so that sm−1 ≤ s ≤ sm ≤ em−1 ≤ e ≤ em and
(s, p, 2) /∈ {Si | 1 ≤ i ≤ m} then

if sm + 2pm − 1 = n then
if number of distinct symbols = d then

output x

else
{ Si } ← { Si } ∪ { (sm, pm, 2) }
addSquare(m+ 1)
{ Si } ← { Si }r { (sm, pm, 2) }
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such that st−1 < st < st−1 + 2pt−1. We know though, from Lemma 3.14, that

the core vector for any position i < st will not increase as the string is extended.

Therefore, if the string is not ρ−d (n)-dense at some position i < st, then no exten-

sion of the string will ever make it ρ−d (n)-dense. We can call this least position i

a cut. We can then modify a portion of Algorithm 4 to take this property into

account, as shown in Algorithm 5. Recall the definition of ρ−d (n)-dense, Defini-

tion 3.12, for the value of mi.

Algorithm 5: Restricting the starting position of St by requiring ρ−d (n)-
density.

begin addSquare(m)
cut← the least i such that ki(x) ≤ ρ−d (n)− r(x[1..i−1])−mi

for sm ← sm−1+1 . . .min(sm−1 + 2pm−1 − 1, cut) do
for pm ← 1 . . . n−sm+1

2
do

if sm + pm ≤ sm−1 + 2pm−1 then
if the squaring of the generator does not conflict with the
existing string then

square the generator
finishSquare(m)
remove the square

else
foreach completion of the generator do

square the generator
finishSquare(m)
remove the square

Although the combination of Algorithm 4 and 5 will ensure that the string

is ρ−d (n)-dense as it is built, if a run is extended beyond just the leading square

its core will shrink and some ki(x) value will decrease. Each time a square is

finalized, we check to ensure that every position up to the start of that square

continues to be ρ−d (n)-dense. We add this additional step into the pseudocode
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and present it in Algorithm 6. In order to avoid checking every position up to sm

for ρ−d (n)-density one could do additional processing in order to determine which

runs could have been extended by the addition of the new square. However, the

additional overhead and complexity is not worth it, given the speed at which every

position may be checked näıvely.

Algorithm 6: Checking for ρ−d (n)-density violations due to shrinking cores.

begin finishSquare(m)
if x[sm − 1] 6= x[sm + pm − 1] then (the square is not left-shiftable)

if x[sm..sm + 2pm − 1] is primitive then
if no run (s, p, e, t) so that sm−1 ≤ s ≤ sm ≤ em−1 ≤ e ≤ em and
(s, p, 2) /∈ {Si | 1 ≤ i ≤ m} then

if every position 1 ≤ i < st is ρ−d (n)-dense then
if sm + 2pm − 1 = n then

if number of distinct symbols = d then
output x

else
{ Si } ← { Si } ∪ { (sm, pm, 2) }
addSquare(m+ 1)
{ Si } ← { Si }r { (sm, pm, 2) }

This code is quite efficient at establishing the value of ρd(n). To näıvely

generate all pattern-distinct (2, 33)-strings and count the number of runs each

contains took approximately 85 hours of computation time on an Orca node of

the SHARCNET computer cluster. Conversely, having already obtained a (2, 33)-

string with 27 runs, it took only an average of 1.8 seconds over 5 executions to

confirm that this is indeed the maximal value.

In order to parallelize Algorithm 4, first we divide the required execution

into separate cases based on the value assigned to p1. While this parallelization

certainly does not result in equal the run-time across the different processes, it
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is an adequate approach for strings of moderate length. When the worst cases

begin to once again take longer than we would like, we divide them up again

by seeding different processors with different prefixes. Every possible pattern-

distinct prefix of a sufficient length is generated, and one given to each processor.

The sufficient length is experimentally determined based on the run-time of the

previous computations.

The bottleneck for this algorithm is exponentially growing number of gen-

erators which must be considered for the long first periods. This illustrates how

effective the ρ−d (n)-density condition is; most partially generated strings are elimi-

nated early on in the computation. Table 4.1 gives the runtimes required for each

starting period for establishing that ρ2(62) = 53. This is a typical case in that

ρ2(62) = ρ2(61) + 1. The cases of p1 = 1 and p1 = 2 both complete immediately,

while p1 = 31 takes the longest.

Table 4.1: Run-time in seconds required to establish that ρ2(62) = 53, given that
we have a (2, 62)-string with 53 runs. Note that ρ2(62) = ρ2(61) + 1.

p1 Time (s) p1 Time (s) p1 Time (s)
1, 2 0 12 11 22 81
3 1860 13 6 23 170
4 942 14 3 24 356
5 919 15 1 25 745
6 317 16 2 26 1554
7 362 17 3 27 3277
8 152 18 4 28 6808
9 80 19 9 29 14073
10 43 20 18 30 29574
11 24 21 38 31 61501

When we have a case where ρ2(n) = ρ2(n−1), the computation slows down

significantly. In Table 4.2, we illustrate this difference by presenting the run-time
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to establish that ρ2(66) = 56. In this case, ρ2(66) = ρ2(65) = 56.

Table 4.2: Run-time in seconds required to establish that ρ2(66) = 56, given that
we have a (2, 66)-string with 56 runs. Note that ρ2(66) = ρ2(65).

p1 Time (s) p1 Time (s) p1 Time (s)
1 194884 12 245 23 180
2 43259 13 154 24 374
3 69691 14 62 25 778
4 36270 15 32 26 1618
5 29216 16 16 27 3362
6 9443 17 10 28 6973
7 8470 18 9 29 14465
8 3712 19 11 30 30083
9 1912 20 20 31 62230
10 963 21 42 32 129837
11 536 22 86 33 268789

We now turn to the heuristic search for run-maximal strings.

4.3 Heuristic search for ρ−2 (n)

For strings with d > 2, the properties outlined in Chapter 2 provide a very good

lower bound for ρd(n). In fact, for all known cases, this bound is tight. Thus

we are able to provide a good estimate by taking the maximum over these three

constructions:

• Let y1 be a run-maximal (d, n− 1)-string with a ∈ A(y1), then x1 = y1a.

• Let y2 be a run-maximal (d−1, n−1)-string with z /∈ A(y2), then x2 = y2z.

• let y3 be a run-maximal (d−1, n−2)-string with z /∈ A(y3), then x3 = y3zz
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These constructions correspond to basic properties of ρd(n) visible in the (d, n−d)-

table, namely Properties 2.1, 2.2, and 2.4 respectively.

We therefore focus on the binary strings, d = 2. First we make use of

Properties 2.1 and 2.3 in order to obtain a basic lower bound. We use the search

algorithm described in Section 4.2 together with some additional heuristics to

further reduce the search space. In most cases, ρ2(n) = ρ2(n− 1) + 1, so if we find

a (2, n)-string with ρ2(n−1)+1 runs, we end our heuristic search and continue on

to the elimination phase to attempt to establish that the found string is actually

run-maximal. The only known binary cases where we have an increase of more

than one are ρ2(14) = ρ2(13) + 2, and ρ2(42) = ρ2(41) + 2.

Our search is based on three restrictions in order to reduce the search pool:

no triples, balanced over every prefix, and maximum period. We will the decisions

to include these heuristic rules and the associated parameters in Sections 4.3.1,

4.3.2, and 4.3.3 respectively.

4.3.1 No triples

For most n, a run-maximal binary, triple-free string exists. Therefore we remove

from consideration all strings which contain aaa or bbb. This is accomplished

through a simple nested conditional check. Let us assume we are extending a

string by adding a symbol at position i, due to either completing or squaring a

generator. If i > 2, we check to see if x[i] = x[i− 1] = x[i− 2]. If so, we indicate

that adding that symbol has failed, and the algorithm moves on to the next step.

This heuristic fails to find a run-maximal string when n = 25 or 65. See

Chapter 5 for a further elaboration of the presence of triples in run-maximal

strings.
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4.3.2 Balanced prefixes

By balanced prefix we mean that for any given prefix of the string, the differ-

ence between the number of a’s and the number of b’s is bounded by a constant.

Conceptually, if a string has too many of one symbol grouped together, then it

would limit the maximum number of runs. We analyzed our exhaustive list of

run-maximal strings for small n in order to establish an acceptable parameter for

the maximum prefix difference. As additional run-maximal strings were found, we

updated our analysis.

We present in Table 4.3 the minimum and maximum prefix differences

found in run-maximal binary strings. We are typically interested in the minimum

prefix difference, as we only need to find a single run-dense string.

While there is a general trend toward larger prefix differences as the length

increases, a maximum prefix difference of 6 is sufficient to find a run-maximal

(2, n)-string for every n ≤ 64.

The following is the only run-maximal string of length 65, and it is weighted

heavily toward a’s:

aababaababbabaababaababbabaababaaababaababbabaababaababbabaababaa

This string has 37 a’s but only 28 b’s. This is the length with the largest minimum

prefix difference on a binary string up to n = 66.

The binary run-maximal strings with the largest prefix difference (for 3 ≤

n ≤ 66) are of length 41 and 43. In both of these strings the symbols are weighted

toward a’s by a difference of 11.

aabaabbaabaaabaabbaabaabbaabaaabaabbaabaa

aabaabbaabaaabaabbaabaabbaabaaabaabbaabaabb
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Table 4.3: The minimum and maximum prefix difference over all run-maximal
binary strings for 3 ≤ n ≤ 66.

n Min. Max. n Min. Max. n Min. Max.
3 1 2 25 5 7 47 2 4
4 2 2 26 2 4 48 2 4
5 1 3 27 2 5 49 3 5
6 2 3 28 2 4 50 3 4
7 2 3 29 2 4 51 2 5
8 2 2 30 2 2 52 2 5
9 1 3 31 2 4 53 3 5
10 2 3 32 2 4 54 6 6
11 2 3 33 5 5 55 2 9
12 4 4 34 2 6 56 2 7
13 1 5 35 2 5 57 2 7
14 2 4 36 2 6 58 2 8
15 2 5 37 3 9 59 3 9
16 1 4 38 2 10 60 4 8
17 1 4 39 2 7 61 5 7
18 2 4 40 2 6 62 6 7
19 2 5 41 2 11 63 5 7
20 4 4 42 4 4 64 4 8
21 1 5 43 2 11 65 9 9
22 2 4 44 2 6 66 2 10
23 2 7 45 3 9
24 2 4 46 2 6

4.3.3 Maximum period

The maximum period in a string is bn
2
c. Indeed, there are multiple run-maximal

strings which contain a run with p = bn
2
c, as described in Chapter 5. In Table 4.4

we present the minimum and maximum values of the maximum period size over

all binary strings of length n for 3 ≤ n ≤ 66. That is, for each string of length n,

we find the largest period it contains. Then we find the minimum values over all

strings of that length.
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Table 4.4: The minimum and maximum values of the largest period in a string
over all run-maximal binary strings for 3 ≤ n ≤ 66.

n Min. Max. n Min. Max. n Min. Max.
3 1 1 25 11 11 47 13 21
4 1 1 26 13 13 48 13 21
5 1 2 27 11 13 49 13 21
6 1 3 28 13 13 50 13 21
7 3 3 29 13 13 51 18 21
8 4 4 30 13 13 52 21 21
9 3 4 31 13 13 53 21 21
10 3 5 32 13 13 54 21 21
11 4 5 33 13 13 55 13 24
12 4 4 34 13 13 56 21 27
13 3 6 35 13 13 57 21 28
14 7 7 36 13 13 58 21 28
15 5 7 37 13 18 59 22 28
16 5 8 38 13 19 60 24 28
17 7 8 39 13 19 61 24 28
18 7 8 40 13 18 62 31 31
19 7 8 41 13 18 63 31 31
20 8 8 42 13 13 64 31 32
21 7 10 43 13 21 65 32 32
22 8 11 44 13 21 66 13 33
23 8 11 45 13 21
24 7 8 46 13 18

As with the balanced prefix, we are typically interested in the minimum

value, as we only need to find a single run-dense string. We introduced this

heuristic based on the minimum values from 3 through 50. To this point, the

minimum value behaves very nicely, with there always existing a run-maximal

string with a maximum period 13. While the minimum largest period does grow

after this point, in many cases we are able to find a run-maximal string with a

maximum period less than half the length.

This heuristic integrates well with the generation of strings via their r-
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cover. Recall that by the definition of the r-cover, the leading square of every

run in the string must be a substring of a square of the r-cover. Therefore, the

maximum period of any run is bounded by the length of the largest period of the

r-cover. Instead of iterating through every possible period size, we can terminate

the loop when the bound is reached.

4.4 Implementing the heuristic search for ρ−2 (n)

We implement these three heuristic rules into the search algorithm from Sec-

tion 4.2 in order to find run-dense binary strings quickly. The values for the

maximum prefix difference and maximum period size are passed to the program

via command-line argument.

In Table 4.5 we present the run-times of the lower bound search algorithm

for (2, 58)-strings, based on various combinations of parameters for the heuristic

rules. The more restrictive parameters result in the program running faster overall,

but may also eliminate some strings which would be returned by less restrictive

parameters. Eliminating too many strings may increase the time required to find

a single (2, n)-string with more than ρ2(n− 1) runs. As only a single such string

is required to establish the improved lower bound, choosing appropriate values

requires balancing these two conflicting influences.
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Table 4.5: The run-time of various combinations of the heuristic search algorithm
looking for a (2, 58)-string with at least 49 runs.

Triples Prefix Diff. Max. Period First (s) Total (s)
allowed no limit no limit 16086 56486
allowed no limit 21 287 503
allowed no limit 26 6113 16039
allowed 6 no limit 7387 16947
allowed 6 21 112 199
allowed 6 26 3172 5290
allowed 10 no limit 9156 31717
allowed 10 21 186 329
allowed 10 26 3588 9428

not allowed no limit no limit 72 233
not allowed no limit 21 72 234
not allowed no limit 26 73 236
not allowed 6 no limit 89 183
not allowed 6 21 5 10
not allowed 6 26 55 98
not allowed 10 no limit 26 220
not allowed 10 21 6 12
not allowed 10 26 41 116
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Chapter 5

Results on run-maximal strings

In this chapter, we will discuss some of the interesting results based on our search

for run-maximal strings. The binary results, which make up the majority of this

section, are based on the run-maximal strings for 3 ≤ n ≤ 66, the lengths for

which we are sure to have found every run-maximal string.

Run-maximal strings which are squares themselves are not particularly

uncommon. This is a disappointing finding, as large periods in the r-cover are

a computational bottleneck in the elimination algorithm. Had long periods not

existed, and this could be proven to hold in general, it could have dramatically

improved the runtime. In fact, there are run-maximal (2, n)-strings which are

squares for n = 6, 8, 10, 14, 16, 22, 26, 38, 62, 64, and 66. For n = 8, 14, 26, and

62, every run-maximal (2, n)-string is a square.

Triples are also fairly common in run-maximal strings, though there is

typically a run-maximal string without one. Triples occur in the run-maximal

(2, n)-strings for n = 5, 9, 13, 15, 21, 23, 25, 27, 34, 37, 38, 39, 41, 43, 45, 55, 57,

58, 59, 65, and 66. Every run-maximal (2, 25)- and (2, 65)-string contains a triple.
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Therefore, our heuristic search which eliminates triples will fail in these cases.

Other cubes are not uncommon either. Though rare in run-maximal (2, n)-

strings for 3 ≤ n ≤ 37, they are quite common in run-maximal strings beyond this

length.

Kolpakov and Kucherov suggest that the maximum exponent in a run-

maximal string may be 3 based on experimental results and the structure of the

run-dense Fibonacci strings [34]. However, we find two run-maximal strings that

contain quadruples. The run-maximal (2, 38)-string

aabaabbaabaabbaabaaaabaabbaabaabbaabaa

and the run-maximal (2, 66)-string

aababaababbabaababaababbabaababaaaababaababbabaababaababbabaababaa

both contain the quadruple aaaa. In our data set, there are no strings with runs

with e ≥ 4 and p > 1. However, we would not be surprised to find such runs in

longer strings.

We mentioned in Section 4.3 that in every case we have computed, the

value of ρd(n) is given by one of Properties 2.1, 2.2, and 2.4 for d > 2. That is,

ρd(n) = max{ρd(n − 1), ρd−1(n − 1), ρd−1(n − 2) + 1}. However, not every run-

maximal (d, n)-string for d > 2 can be created by one of the three constructions.

In particular, we are interested in run-maximal (d, n)-strings for d > 2 with

overlapping r-covers. The exist for d = 3 for some lengths, but not all. We have

run-maximal (3, n)-strings for 11 ≤ n ≤ 14, 17 ≤ n ≤ 20, 23 ≤ n ≤ 26, 36 ≤ 42,

and n = 45. Note that the lengths where ρ3(n) = ρ3(n− 1) are n = 7, 11, 17, 23,

36, 40, and 45. The overlap suggests that it is the flexibility afforded by the tie

ρ3(n) = ρ3(n− 1) that allows for run-maximal strings with overlapping r-covers.
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For the (4, n)-strings, we have fewer strings with overlapping r-covers. In

this case, we have overlapping r-covers for 19 ≤ n ≤ 20 and 25 ≤ n ≤ 26. Again,

there is a correspondence between overlapping r-covers and ρ4(n) = ρ4(n−1). We

have ρ4(n) = ρ4(n− 1) when n = 9, 13, 19, 25, and 38.

We have been unable to find any run-maximal (d, n)-string for d > 4 with

an overlapping r-cover.

In most cases, ρd(n)−1 ≤ ρd(n−1) ≤ ρd(n). That is, increasing the length

by 1 leaves the maximum number of runs the same, or increases it by one. However,

there are two known points where ρd(n) = ρd(n − 1) + 2: n = 14 and n = 42.

This makes for a unique region of the (d, n − d)-table. In the first case, n = 14,

the skip by 2 disappears on the d = 3 line, as it is cancelled by merging with the

tie ρ2(12) = ρ2(13). This structure is shown in Table 5.1. However, in the case of

n = 42, the +2 skip propagates straight down the (d, n−d)-table. We expect that

it will eventually be cancelled by intersecting with the tie ρ2(35) = ρ2(36) which

propagates down the diagonal.

Table 5.1: Values for ρd(n) with 2 ≤ d ≤ 3 and 10 ≤ n − d ≤ 13. Note how the
skip of +2 on row d = 2 disappears on row d = 3.

n− d
9 10 11 12 13 14

d
2 . 8 8 10 10 .
3 . 8 9 10 11 .
4 . . . . . .
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Chapter 6

Necessary conditions for a

(d, n)-string to have more than

n− d runs

Computational evidence supports the conjecture that ρd(n) ≤ n−d, which implies

ρ(n) ≤ n. We consider the structural properties of a (d, n)-string with strictly

more than n − d runs. We hope that future work may be able to restrict the

structure of such a string to such a point that it can never exist, thus proving that

ρd(n) ≤ n− d for all 2 ≤ d ≤ n.

Let us assume that ρi−1(2i − 2) ≤ i − 1. Therefore by Property 2.11, for

every 1 ≤ i′ < i, ρi′(2i
′) ≤ i′. If there exists a (d, n)-string x with r(x) > n−d = i,

we can restrict the structure of that string.

Proposition 6.1: [4] Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal

(d, n)-string for some n− d = i. Either r(x) = ρd(n) ≤ n− d or no symbol occurs

exactly 2, 3, . . . , 8 times in x.
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The proof of Proposition 6.1 relies on a series of lemmas, all of which

deal with the same basic scenario. We consider a run-maximal (d, n)-string x

containing a k-tuple of c’s such that x = u0cu1c . . .uk−1cuk. We show that

either x satisfies the conjectured upper bound, or can be used to generate a new

string a new string y with more distinct symbols and the same length. We ensure

that the manipulation process does not destroy more runs than the number by

which the alphabet is increased. This allows us to place a limit on the number

of runs in y based on the values in the (d, n − d) table for i′ < i. In essence, we

manipulate a string from column i to form a string from some column i′ < i while

monitoring how the number of runs changes. In the manipulation process, we put

an upper limit on the number of runs that are destroyed, which will be denoted

by π, and a lower limit on how many additional symbols are introduced, denoted

by δ.

Following the definition of a mapping and an outline of the approaches to

be used, we present seven lemmas which taken together prove Proposition 6.1. The

proof for each lemma requires multiple cases, and they get increasingly complex.

It is for this reason that we concluded the investigation at 8-tuples, but we expect

that a similar argument would extend the proof to larger tuples. After the proofs

of the lemmas, we will return to a discussion of the implications of Proposition 6.1.

Definition 6.2: Map A run (s, p, e, t) in a string x maps position i to position

j if s ≤ i < j < s+ ep+ t, x[i] = x[j], and j− i = p. Let i→ j denote a mapping

from i to j, called a single-mapping. Let the double-mapping (i1, i2)→ (j1, j2)

indicate that s ≤ i1 < i2 < j1 < j2 < s + ep + t, x[i1] = x[i2] = x[j1] = x[j2],

i2 − i1 < p and j1 − i1 = j2 − i2 = p. The triple-mappings and higher order

mappings are defined analogously.
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A multi-mapping is any mapping which is not a single-mapping. The

presence of a multi-mapping imposes equality on the substrings bounded on each

side. For example, in the double-mapping (ij, ij+1) → (ij+2, ij+3), the substring

between ij and ij+1 is the same as the substring between ij+2 and ij+3. That is,

x[ij..ij+1] = x[ij+2..ij+3]

We present a mapping as a consequence of having a run in a string. How-

ever, given positions 1 ≤ i < j ≤ n, with x[i] = x[j], we can consider a candidate

mapping between these positions corresponding to a run with period j − i. For

simplicity’s sake, we will refer to such a candidate mapping simply as a mapping.

Further investigation of the structure of the string may reveal that no such run

can occur.

When searching for a run from a mapping we will assume that all copies of

a symbol from the generator are included in the mapping. That is, if we consider

a triple-mapping, the generator of the corresponding run must have exactly three

copies of that symbol. We will also typically assume that the mapping applies to

the leading square.

To ensure that there are sufficiently more distinct symbols in y than in

x, we use multiple strategies. The two most common approaches are as follows.

First, we can change all but one of the c’s to new characters c2, c3, . . . ck, thus

introducing k − 1 new symbols. This destroys, at most, the runs which contain

a c. The other primary method involves the substrings between the c’s. When

multiple disjoint copies of a substring occur in x, we can replace all copies of a

symbol within one copy of the substring with a new symbol which does not occur

elsewhere in x. Given x = uvu, we can increase the number of distinct symbols

with y = ucû. We will assume that ucûcû has two more distinct symbols than
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ucucu does, and so on. That is, while we continue to use the same notation,

each copy of û introduces a new distinct symbol. As all copies of the symbol

within the substring are replaced, the runs contained entirely within the substring

remain intact and only those runs which extend outside of the substring may be

destroyed. This approach can only be used when the substring having a symbol

changed is non-empty.

Another strategy used is to show that the candidate run derived from a

mapping cannot actually exist in the string. This is typically the case when some

substring is assumed to be empty, resulting in a structure of the form . . . ccucc . . ..

As we always assume the presence of every single mapping, we assume that there is

a mapping between the second and third c’s, which bracket u. However, assuming

that u is non-empty, there must be a symbol between the first and second c’s,

or the third and fourth. Since no such symbol can exist in either place, the run

referred to by the single-mapping cannot exist.

Another way we can decrease the number of possible runs is by having

runs merged together. When the substring between elements of the k-tuple are

the same due to multi-mappings, occasionally this collapses multiple runs down

to one with a larger exponent. For example, . . . cucuc . . . can only have one

run corresponding to a single mapping. Runs can also be merged together when

substrings are assume to be empty.

The manipulations we perform keep the length of the string constant while

the number of distinct symbols increases. Therefore, y is a (d + δ, n)-string and

since n− (d+ δ) < n−d, it must satisfy the maximum number of runs conjecture.

If π is the upper bound to the number of runs which are destroyed through the

modification of the string, r(x) − π ≤ r(y) ≤ i − δ. Therefore, ρd(n) = r(x) ≤
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n− d− δ + π. Thus, whenever π ≤ δ, ρd(n) ≤ n− d.

The proofs of the lemmas consist of several cases and subcases. The cases

typically involve considering that different subsets of mappings apply to the string.

The subcases deal with substrings being empty or non-empty.

Lemma 6.3: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ n− d or x does not contain a pair.

Proof. As noted in [13], a pair of c’s can be involved in at most one run. This

corresponds to one single-mapping. We change the second c to a new symbol c2

creating y = u0cu1c2u2 . We destroy at most the single run which contains the

pair (π ≤ 1), and gain 1 symbol (δ = 1). As π ≤ δ, either r(x) ≤ i or x does not

contain a pair.

Lemma 6.4: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ n− d or x does not contain a 3-tuple.

Proof. A 3-tuple of c’s at positions i1 < i2 < i3 can be involved in at most two

runs, corresponding to the single-mappings i1 → i2 and i2 → i3. If a 3-tuple of c’s

is involved in less than two runs, we can proceed as in the proof of Lemma 6.3.

Therefore, let us therefore assume that the c’s are involved in two runs.

The string then has the form x = u0cu1cu2cu3. In this case, we replace

two of the c’s with new symbols c2 and c3 creating y = u0cu1c2u2c3u3. This

destroys, at most, only the two possible runs which contain a c (π ≤ 2), while we

gain two symbols (δ = 2). Again, δ is sufficiently large so that either r(x) ≤ i, or

x does not have a 3-tuple.

Lemmas 6.3 and 6.4 imply that if only single-mappings are involved, then

we can obtain a new string with sufficiently more distinct symbols while limiting

65



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

the number of runs destroyed. In Lemmas 6.5 through 6.9, we will only consider

the cases which include a multi-mapping.

Lemma 6.5: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ n− d or x does not contain a 4-tuple.

Proof. A 4-tuple of c’s at positions i1 < i2 < i3 < i4 can be involved in at

most four runs, corresponding to a double-mapping (i1, i2) → (i3, i4) and single-

mappings i1 → i2, i2 → i3, and i3 → i4. If the c’s are involved in only three or

fewer runs, replacing three occurrences of c by three new symbols will give δ = 3

and π ≤ 3, so π ≤ δ, proving the lemma.

We therefore assume that the c’s are involved in exactly four runs. In this

case replacing three of the c’s by new symbols is no longer enough, as π would

be greater than δ. However, from the double-mapping (i1, i2)→ (i3, i4), we know

that x[i1..i2] = x[i3..i4]. Therefore, if x = u0cu1cu2cu3cu4, then u1 = u3,

so x = u0cu1cu2cu1cu4. We must consider the possibility of u1 being either

non-empty or empty.

Case 1: Assume u1 6= ε. We replace the last three copies of c with new

symbols c2, c3, and c4, and all instances of some symbol in the second occurrence

of u1 with a new symbol producing: y = u0cu1c2u2c3û1c4u4. This gives π ≤ 4,

but now δ = 4, satisfying the lemma.

Case 2: Assume u1 = ε. Now the string is x = u0ccu2ccu4. We must

consider the cases of u2 being empty or non-empty

Case 2.1: Assume u2 6= ε, giving x the form: x = u0ccu2ccu4. Since u2 is

non-empty, if the mapping i2 → i3 corresponds to a run, then a symbol in u2 must

also appear between the first and second c’s, or the third and fourth c’s. However,

this requires u1 to be non-empty, a contradiction. Therefore, the mapping i2 → i3
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cannot refer to a run in the string, and so the c’s are not involved in four different

runs.

Case 2.2: Assume u2 = ε, so x = u0ccccu4. This merges all 4 possible

runs into a single run, so there are not 4 runs covering the c’s.

Lemma 6.6: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ n− d or x does not contain a 5-tuple.

Proof. A 5-tuple of c’s at positions i1 < i2 < i3 < i4 < i5 can be involved in at most

5 runs despite there being 6 possible mappings: double-mappings (i1, i2)→ (i3, i4)

and (i2 → i3) → (i4, i5), and single-mappings i1 → i2, i2 → i3, i3 → i4, and

i4 → i5. If both double-mappings exist, they correspond to the same run, as they

have the same period p and overlap by at least p.

In the case of a 5-tuple, we can always introduce 1 new symbol while only

destroying at most a single run. There are 3 cases to consider:

Case 1: All mappings correspond to runs. Then x[i5] is involved in two

runs, one corresponding to both double-mappings (i1, i2)→ (i3, i4) and (i2, i3)→

(i4, i5), and one corresponding to i4 → i5. If we replace x[i5] by a new symbol c5, we

destroy the run corresponding to i4 → i5, but not the core of the run corresponding

to (i1, i2)→ (i3, i4) and (i2 → i3)→ (i4, i5). This gives us π ≤ 1 = δ.

Case 2: The mapping (i1, i2) → (i3, i4) exists, but (i2, i3) → (i4, i5) does

not, while all single-mappings exist. As x[i5] is only involved in the single mapping,

we replace it with c5, destroying at most one run and introducing one new symbol

(π ≤ 1 = δ).

Case 3: The mapping (i1, i2)→ (i3, i4) does not exist, but (i2, i3)→ (i4, i5)

does, and all possible single-mappings exist. We proceed as in the second case,

but replace the symbol at i1 with c1.
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We remarked previously that if only single-mappings exist, then it is easy to

perform our string manipulation in order to satisfy the lemma. From Lemma 6.6,

we can see that, in fact, every c must be covered by some multi-mapping. In

Lemmas 6.7 through 6.9, we will only consider the cases where every c is involved

in at least one multi-mapping.

Lemma 6.7: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ n− d or x does not contain a 6-tuple.

Proof. A 6-tuple at positions i1 < . . . < i6 can be involved in at most 8 runs,

despite there being 9 available mappings:

• triple-mapping: (i1, i2, i3)→ (i4, i5, i6)

• double-mappings: (i1, i2) → (i3, i4), (i2 → i3) → (i4, i5), and (i3, i4) →

(i5, i6)

• single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, and i5 → i6

As in Lemma 6.6, if either both (i1, i2) → (i3, i4) and (i2 → i3) → (i4, i5),

or (i2 → i3)→ (i4, i5) and (i3, i4)→ (i5, i6) exist, the two runs they correspond to

are actually the same run due to their overlap.

Let x = u0cu1cu2cu3cu4cu5cu6. We consider each configuration of multi-

mappings separately:

Case 1: (i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-mappings: By

the double-mappings, u1 = u3 = u6, and therefore the string x has the form: x =

u0cu1cu2cu1cu4cu1cu6. We now consider sub-cases of different combinations of

empty and non-empty substrings:
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Case 1.1: Assume u1 6= ε. We replace 5 of the c’s with new symbols,

and all instances of some symbol in 2 of the 3 copies of u1. This gives y =

u0cu1c2u2c3û1c4u4c5û1c6u6, resulting in π ≤ 7 = δ.

Case 1.2: Otherwise, assume u1 = ε. The string now has the form: x =

u0ccu2ccu4ccu6. Much like in Lemma 6.5, when both u2 and u4 are non-empty

this eliminates the possibility of runs from the single-mappings i2 → i3 and i4 → i5.

We can then replace 5 of the c’s with new symbols. We have π ≤ 5 = δ. Otherwise,

when either u2 or u4 is empty, three single-mappings and a double-mapping reduce

down to a single run, allowing us to introduce enough new symbols from replacing

the c’s alone.

Case 2: (i1, i2, i3) → (i4, i5, i6) and all single-mappings: By the triple-

mapping, u1 = u4 and u2 = u5, so the string is x = u0cu1cu2cu3cu1cu2cu6

Case 2.1: Assume u1 = u2 = ε, then the possible run from the single

mapping i1 → i2 is merged with the one from i2 → i3, and i4 → i5 is merged with

i5 → i6. By replacing 5 of the c’s with new symbols, we have π ≤ 4 < δ = 5.

Case 2.2: Assume at least one of u1 and u2 are non-empty. Without loss

of generality, assume u1 6= ε, giving y = u0c1u1c2u2c3u3c4û1c5u2c6u6. This

transformation destroys at most 6 runs and introduces 6 new symbols, so π ≤ 6 =

δ. If u1 = ε, then simply replace a symbol in u2 to obtain the same result.

Case 3: (i1, i2, i3)→ (i4, i5, i6), one of (i1, i2)→ (i3, i4) or (i3, i4)→ (i5, i6)

but not both, and all the single-mappings: Without loss of generality, we will

assume that (i1, i2) → (i3, i4) exists. By the double- and triple-mappings, u1 =

u3 = u4 and u2 = u5, making the string x = u0cu1cu2cu1cu1cu2cu6.

Case 3.1: Assume u1 6= ε. Replace each instance of a symbol in 2 copies of

u1 and 5 of the c’s with new symbols, giving y = u0cu1c2u2c3û1c4û1c5u2c6u6.
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This increases the number of distinct symbols by 7 while destroying at most 7

runs from the mappings (π ≤ 7 = δ).

Case 3.2: Otherwise, assume u1 = ε, giving x = u0ccu2cccu2cu6. This

arrangement loses 1 possible run due to merging of mappings i3 → i4 and i4 → i5.

If u2 = ε, all the mappings collapse down to a single run. Assume then that

u2 6= ε. This eliminates the possibility of the mapping i2 → i3 reducing π from 7

down to 5. By replacing 5 of the c’s with new symbols, we obtain the inequality

π ≤ 5 = δ.

Case 4: The multi-mappings (i1, i2, i3) → (i4, i5, i6) and (i2, i3) → (i4, i5)

exist, and so do all the single-mappings. By the double- and triple-mappings,

u1 = u2 = u4 = u5, giving x = u0cu1cu1cu3cu1cu1cu6.

Case 4.1: Assume u1 6= ε. We relabel each instance of a symbol in 3 copies

of u1: y = u0c1u1c2û1c3u3c4û1c5û1c6u6. This increases the number of distinct

symbols by 8 while destroying at most 7 runs (π ≤ 7 < δ = 8).

Case 4.2: Otherwise, u1 = ε, so x = u0cccu3cccu6, and the runs from 2

single-mappings are lost through merging i1 → i2 with i2 → i3 and i4 → i5 with

i5 → i6. Replacing 5 of the c’s with new symbols is sufficient to give π ≤ 5 = δ.

Case 5: The multi-mappings (i1, i2, i3)→ (i4, i5, i6), (i1, i2)→ (i3, i4), and

(i3, i4) → (i5, i6) exist, and so do all the single-mappings. From the double- and

triple-mappings, u1 = u2 = u3 = u4 = u5, giving x = u0cu1cu1cu1cu1cu1cu6.

All the possible runs are actually one long run, so the last c may be replaced with

a new symbol without destroying any runs. This gives π = 0 < δ = 1.

From this point on, we will only consider cases which include at least one

triple-mapping. Any cases which have only single- and double-mappings follow a

structure similar to the cases already considered.
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Lemma 6.8: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n− d = i. Either r(x) = ρd(n) ≤ i or x does not contain a 7-tuple.

Proof. A 7-tuple of c’s at positions i1 < . . . < i7 can be involved in 9 runs, despite

there being 12 possible mappings:

• triple-mappings: (i1, i2, i3)→ (i4, i5, i6) and (i2, i3, i4)→ (i5, i6, i7)

• double-mappings: (i1, i2) → (i3, i4), (i2, i3) → (i4, i5), (i3, i4) → (i5, i6), and

(i4, i5)→ (i6, i7)

• single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, i5 → i6, and i6toi7

As with the double-mappings which overlap by more than p positions, if

both triple-mappings are present, they correspond to the same run. Since having

both triple-mappings cannot increase the possible number of runs above having

only one, we assume without loss of generality, that if a triple-mapping is present,

it is (i1, i2, i3)→ (i4, i5, i6).

Let x = u0cu1cu2cu3cu4cu5cu6cu7. There are 3 cases to consider:

Case 1: (i1, i2)→ (i3, i4), (i4, i5)→ (i6, i7), and all single-mappings (a total

of 8 mappings). Due to the double-mappings, u1 = u3 and u4 = u6, giving x the

form x = u0cu1cu2cu1cu4cu5cu4cu7.

Case 1.1: Assume u1 6= ε and u4 6= ε. Replace all instances of a symbol in

1 copy of each of u1 and u4, along with 6 of the c’s with new symbols, yielding y =

u0cu1c2u2c3û1c4u4c5u5c6û4c7u7. This destroys at most 8 runs and introduces 8

new symbols (π ≤ 8 = δ).

Case 1.2: Assume u1 6= ε while u4 = ε. The string x now has the form

x = u0cu1cu2cu1ccu5ccu7. This eliminates the possibility of a run corresponding
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to the mapping i5 → i6, unless u5 = ε, in which case 2 possible runs are lost to

merging into one. Replacing all instances of a symbol in 1 copy of u1 along with

6 of the c’s by new symbols gives π ≤ 7 = δ.

Case 1.3: Assume u1 = ε while u4 6= ε. This is a reversal of the previous

case, and is satisfied accordingly.

Case 1.4: Assume u1 = u4 = ε. Therefore, x = u0ccu2cccu5ccu7. If

u2 = ε or u5 = ε, the possible runs from 5 mappings are lost due to being

merged, thus reducing π to at most 3. Therefore assume that u2 and u5 are non-

empty. In this case, the possibility of runs corresponding to the mappings i2 → i3

and i5 → i6 are eliminated, so relabeling 6 of the c’s gives π ≤ 6 = δ.

Case 2: Let there be multi-mappings (i1, i2, i3) → (i4, i5, i6), (i4, i5) →

(i6, i7), and all single-mappings (a total of 8 mappings). From the multi-mappings,

u1 = u4 = u6 and u2 = u5, so the string x must have the form x = u0cu1cu2c

u3cu1cu2cu1cu7.

Case 2.1: Assume u1 6= ε. We replace all instances of a symbol in 2 copies

of u1, along with 6 of the c’s with new symbols yielding y = u0cu1c2u2c3u3c4û1c5

u2c6û1c7u7. This gives π ≤ 8 = δ.

Case 2.2: Otherwise, u1 = ε, so the string must have the form x =

u0ccu2cu3ccu2ccu7.

Case 2.2.1: Let u2 6= ε. This eliminates the possibility of a run corre-

sponding to the mapping i5 → i6, so by replacing all instances of a symbol in a

u2 along with 6 of the c’s with new symbols, we have π ≤ 7 = δ.

Case 2.2.2: Otherwise, u2 = ε. This gives the string the form x =

u0cccu3ccccu7. The possible runs collapse, leaving at most 3 runs.

Case 3: (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all
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the single-mappings (a total of 9 mappings). From the multi-mappings, u1 = u4 =

u6 and u2 = u3 = u5. This makes the string x = u0cu1cu2cu2cu1cu2cu1cu7.

Case 3.1: Assume that u1 are u2 are both non-empty. Replacing all

instances of a symbol in 2 copies of each of u1 and u2 along with 6 of the c’s with

new symbols, gives us π ≤ 9 < δ = 10.

Case 3.2: Assume u1 = ε. The string is then x = u0ccu2cu2ccu2ccu7.

The possible run corresponding to the mapping i5 → i6 is eliminated, so replacing

all instances of a symbol in 2 copies of u2 along with 6 of the c’s with new symbols

is sufficient to give π ≤ 8 = δ.

Case 3.3: Assume u2 = ε. The string is then x = u0cu1cccu1ccu1cu7.

The runs corresponding to the mappings i2 → i3 and i3 → i4 are merged, and

the possible run corresponding to the mapping i4 → i5 is eliminated. Therefore,

replacing all instances of a symbol in 2 copies of u1 along with 6 of the c’s with

new symbols is sufficient to give π ≤ 7 < δ = 8.

Lemma 6.9: Let ρi′(2i
′) = i′ for 1 ≤ i′ < i. Let x be a run-maximal (d, n)-string

for some n−d = i. Either r(x) = ρd(n) ≤ n−d or x does not contain an 8-tuple.

Proof. Case 1: Let us take (i1, i2, i3)→ (i4, i5, i6), (i5, i6)→ (i7, i8), and all single-

mappings (a total of 9 mappings). By the multi-mappings, the string has the form

x = u0cu1cu2cu3cu1cu2cu6cu2cu8.

Case 1.1: Assume u2 6= ε, we can replace all instances of a symbol in 2

copies of u2 and 7 of the c’s: y = u0cu1c2u2c3u3c4u1c5û2c6u6c7û2c8u8. This

gives π ≤ 9 = δ.

Case 1.2: Otherwise, u2 = ε, giving x = u0cu1ccu3cu1ccu6ccu8. This
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eliminates the possibility of a run from the mapping i6 → i7. This means π ≤ 8.

However, we must consider further sub-cases.

Case 1.2.1: If u1 6= ε, we can replace all instances of a symbol in 1 of the

copies of u1 along with 7 of the c’s, giving y = u0cu1c2c3u3c4û1c5c6u6c7c8u8.

This results in π ≤ 8 = δ.

Case 1.2.2: If u1 = ε, the string has the structure x = u0cccu3cccu6ccu8.

This structure eliminates the possible run from the mapping i6 → i7. Additionally,

the runs corresponding to the single mappings i1 → i2 and i2 → i3 are merged,

along with the runs corresponding to the mappings i4 → i5 and i5 → i6. This

reduces the maximum number of runs to π ≤ 6. By relabeling 7 of the c’s, we

obtain π ≤ 6 < δ = 7. This assumes that u3 and u6 are non-empty, but if either

is empty, sufficient runs are lost through merging.

Case 2: Let the string have the multi-mappings (i1, i2, i3) → (i4, i5, i6),

(i1, i2) → (i3, i4), (i5, i6) → (i7, i8), and all single-mappings (a total of 10 map-

pings). By the multi-mappings, the string is x = u0cu1cu2cu1cu1cu2cu6cu2cu8.

Case 2.1: Assume u1 and u2 are both non-empty. We can then re-

place all instances of a symbol in 2 copies of each, along with 7 of the c’s:

y = u0cu1cu2cû1cû1cû2cu6cû2cu8. This results in π ≤ 10 < δ = 11.

Case 2.2: Assume u1 = ε and u2 6= ε. So x = u0ccu2cccu2cu6cu2cu8.

This eliminates the possibility of a run corresponding to the mapping i2 → i3, and

merges the runs corresponding to i3 → i4 and i5 → i6, so π ≤ 8. We replace all in-

stances of a symbol in 2 of the copies of u2, and y = u0cc2u2c3c4c5û2c6u6c7û2c8u8.

This results in π ≤ 8 < δ = 9.

Case 2.3: Assume u1 6= ε, and u2 = ε. So x = u0cu1ccu1cu1ccu6ccu8.

This eliminates the possibility of a run corresponding to the mapping i6 →
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i7,unless u6 = ε, which results in 3 possible runs being merged. We replace all

instances of a symbol in 2 copies of u1, along with 7 of the c’s with new symbols,

giving y = u0cu1c2c3û1c4û1c5c6u6c7c8u8. This results in π ≤ 9 = δ.

Case 2.4: Assume u1 = u2 = ε. We then have x = u0ccccccu6ccu8, merg-

ing 5 runs corresponding to the single mappings, and preventing the possible run

corresponding to (i1, i2) → (i3, i4) because its generator would not be primitive.

Therefore, by replacing 7 of the c’s with new symbols, we obtainπ ≤ 5 < δ = 7.

Case 3: Let the string have the multi-mappings (i1, i2, i3) → (i4, i5, i6),

(i2, i3)→ (i4, i5), (i5, i6)→ (i7, i8), and all single-mappings, a total of 10 mappings.

By the multi-mappings, the string is x = u0cu1cu1cu3cu1cu1cu6cu1cu8.

Case 3.1: Assume u1 6= ε. Then we can replace all instances of a sym-

bol in 4 copies of u1, along with 7 of the c’s with new symbols, yielding y =

u0cu1c2û1c3u3c4û1c5û1c6u6c7û1c8u8. This results in π ≤ 10 < δ = 11.

Case 3.2: If u1 = ε, the string has the form x = u0cccu3cccu6ccu8.

This merges the runs corresponding to the mappings i1 → i2 with i2 → i3, and

i4 → i5 with i5 → i6, and eliminates the possible run corresponding to the mapping

(i2, i3) → (i4, i5), unless u3 = ε, in which case 2 more runs are lost through

merging. This gives π ≤ 7 = δ by just replacing 7 of the c’s with new symbols.

Case 4: Let the string have the multi-mappings (i1, i2, i3) → (i4, i5, i6),

(i3, i4)→ (i5, i6), (i5, i6)→ (i7, i8), and all single-mappings, a total of 10 mappings.

By the multi-mappings, the string is x = u0cu1cu2cu2cu1cu2cu6cu2cu8.

Case 4.1: If u2 6= ε, replace all instances of a symbol in 3 copies of u2 with

new symbols, giving π ≤ 10 = δ.

Case 4.2: If u2 = ε, the runs corresponding to the single mappings i2 →

i3 and i3 → i4 are merged, giving 9 possible runs. If u1 6= ε, the mapping
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corresponding to the i4 → i5 is also prevented, giving 8 possible runs. By replacing

all instances of some symbol in 1 copy of u1 along with 7 of the c’s gives π ≤ 8 = δ.

If u1 = ε, 5 possible runs are lost through merging, making the process trivial.

Case 5: Let the string have the multi-mappings (i1, i2, i3) → (i4, i5, i6),

(i1, i2) → (i3 → i4), (i3, i4) → (i5 → i5), (i5, i6) → (i7, i8), and all single-

mappings,a total of 11 mappings. By the multi-mappings, the string has the

form x = u0cu1cu1cu1cu1cu1cu6cu1cu8. If u1 6= ε, replace all instances of

a symbol in 5 copies of u1, along with 7 of the c’s with new symbols, giving

π ≤ 11 < δ = 12. Otherwise, u1 = ε, and 4 single runs are lost through being

merged, giving π ≤ 7 = δ.

Case 6: Let the string have the multi-mapping (i1, i2, i3, i4)→ (i5, i6, i7, i8)

and all single-mappings, a total of 8 mappings, By the quadruple-mapping, the

string has the form x = u0cu1cu2cu3cu4cu1cu2cu3cu8. We cannot have u1, u2

and u3 all be empty or several runs are merged, so we replace all instances of a

symbol in at least 1 of them, along with 7 of the c’s with new symbols. This gives

π ≤ 8 ≤ δ ≤ 10.

Case 7: Let the string have the multi-mappings (i1, i2, i3, i4)→ (i5, i6, i7, i8),

(i1, i2) → (i3, i4), and all single-mappings, initially giving 9 runs. By the multi-

mappings, the string has the form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This

gives a total of 10 runs. See Case 9, where this string structure is solved under

the stronger assumption of 11 mappings.

Case 8: Let the string have the multi-mappings (i1, i2, i3, i4)→ (i5, i6, i7, i8),

(i2, i3) → (i4, i5), and all single-mappings, a total of 9 mappings. By the multi-

mappings, the string has the form x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

Case 8.1: Assume u2 6= ε. Replace all instances of a symbol in 2 copies of

76



Ph.D. Thesis – A. Baker McMaster University – Computing and Software

it, along with 7 of the c’s with new symbols, giving π ≤ 9 = δ.

Case 8.2: Otherwise, u2 = ε, giving x = u0cu1ccu3ccu1ccu3cu8. This

eliminates the possibility of a run corresponding to the single mappings i3 → i4

and i5 → i6, unless u1 or u3 is empty; in either case, 2 possible runs are lost

through merging. This gives π ≤ 7, which is achievable by replacing 7 of the c’s.

Case 9: Let the string have the multi-mappings (i1, i2, i3, i4)→ (i5, i6, i7, i8),

(i3, i4) → (i5, i6), and all single-mappings, a total of 9 mappings. By the multi-

mappings, the string has the form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This

same configuration was previously created in Case 7 and is solved in Case 10

where it is assumed to have 11 mappings.

Case 10: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-mappings, initially giving 10

runs. Having one of the double-mappings completely enclosed within one side of

the quadruple-mapping means it exists on the other side of the quadruple-mapping

too, so (i5, i6) → (i7, i8) also exists. By the multi-mappings, the string has the

form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This gives a total of 11 runs.

Case 10.1: Assume u1 6= ε.

Case 10.1.1: Assume u2 6= ε. In this case, replace all instances of a

symbol in 3 of the copies of u1 and one copy of u2, along with 7 of the c’s, giving

π ≤ 11 = δ.

Case 10.1.2: Otherwise u2 = ε. This gives the string the structure x =

u0cu1ccu1cu4cu1ccu1cu8. If u4 = ε, the whole string collapses down to 4 runs.

Assume then that u4 6= ε. This eliminates the possibility of a run from mapping

(i3, i4) → (i5, i6), making π ≤ 10. We can then obtain δ = 10 by replacing 7 of

the c’s and all copies of a symbol in 3 of the copies of u1.
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Case 10.2: Otherwise, u1 = ε, so x = u0ccu2ccu4ccu2ccu8. This elimi-

nates the possibility of the single-mappings i2 → i3, i4 → i5, and i6 → i7, unless

u2 or u4 are empty, in which case 4 or 2 possible runs are lost through merging,

respectively. This reduces the number of possible runs to at most 8, and we can

achieve π ≤ 7 = δ by simply replacing 7 of the c’s with new symbols and all copies

of a symbol in one of the copies of u2.

Case 11: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i1, i2)→ (i3, i4), (i3, i4)→ (i5, i6), and all single-mappings, a total of 10 mappings.

By the multi-mappings, the string is x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This

same configuration was previously discussed in Case 10 when we assumed it had

11 mappings, so it can be satisfied again in this case.

Case 12: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i2, i3)→ (i4, i5), (i4, i5)→ (i6, i7), and all single-mappings, a total of 10 mappings.

By the multi-mappings, u1 = u5, u2 = u4 = u6, and u3 = u7, so the string has

the form x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

Case 12.1: Assume u2 6= ε and one of u1 or u3 is non-empty. Replace all

instances of a symbol in 1 copy of u1 or u3 and 2 copies of u2, along with 7 of

the c’s with new symbols, giving π ≤ 10 ≤ δ ≤ 11.

Case 12.2: If u2 6= ε, but both u1 = u3 = ε, the string has the form x =

u0ccu2ccu2ccu2ccu8. The possibilities of runs corresponding to the mappings

i2 → i3, i4 → i5, and i6 → i7 are eliminated, so by replacing 7 of the c’s we achieve

π ≤ 7 = δ.

Case 12.3: If u2 = ε, the string has the form x = u0cu1ccu3ccu1ccu3cu8.

The possibility of runs corresponding to the mappings i3 → i4 and i5 → i6 is

eliminated. Since neither u1 nor u3 are empty or many more possible runs are
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lost through merging, raising 1 copy of each of these gives π ≤ 8 < δ = 9.

Case 13: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all single-mappings, a total of 10 map-

pings. By the multi-mappings, the string is x = u0cu1cu2cu1cu2cu1cu2cu1cu8.

Therefore, x = u0(cu1cu2)3cu1cu8, so we can replace the first c only destroying

at most a single run (π ≤ δ = 1).

Case 14: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i1, i2, i3) → (i4, i5, i6), and all single-mappings, a total of 9 mappings. By the

multi-mappings, the string has the form x = u0cu1cu1cu3cu1cu1cu1cu3cu8.

This merges the possible runs from i1 → i2 and i2 → i3, as well as i4 → i5,

i5 → i6, and i6 → i7, leaving 6 possible runs. Replacing 7 of the c’s with new

symbols is sufficient to give π ≤ 6 < δ = 7.

In addition, we can layer up to 2 double-mappings on top of the triple- and

quadruple-mappings, giving a total of 11 mappings. Again, there are at least 3

possible runs lost through merging, giving at most 8 runs. Since u1 and u3 cannot

both be empty, we can replace all instances of a symbol in 1 of the copies of u1

or u3. Therefore, π ≤ 8 ≤ δ.

Case 15: Let the string have multi-mappings (i1, i2, i3, i4) → (i5, i6, i7, i8),

(i2, i3, i4) → (i5, i6, i7), and all single-mappings, a total of 9 mappings. By the

multi-mappings, the string has the form x = u0cu1cu1cu1cu4cu1cu1cu1cu8.

This merges the possible runs corresponding to i1 → i2, i2 → i3, and i3 → i4,

along with i5 → i6, i6 → i7, and i7 → i8, decreasing the maximum number of runs

by 4. By replacing 7 of the c’s with new symbols, we get π ≤ 5 < 7 = δ.

Once again, we can also layer up to 2 additional double-mappings on top of

the triple- and quadruple-mappings. However, we are still limited to 11 possible
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runs. After discounting the 4 possible runs lost to merging, we have π ≤ 7 = δ

from replacing 7 of the c’s with new symbols.

This completes the last lemma which supports Proposition 6.1. Taken

together, they show that a (d, n)-string x with n− d = i in the first such column

and r(x) > i cannot have a 2- through 8-tuple.

A corollary of this result is that the first counter-example on the main

diagonal must have many singletons, given that it must have either 1 or at least

9 of each symbol.

Corollary 6.10: [4] Let ρi′(2i
′) = i′ for 2 ≤ i′ < i. Let x be a run-maximal

(i, 2i)-string. Either r(x) = i or x has at least d7i
8
e singletons.

Proof. Let m1 denote the number of singletons, and m2 the number of non-

singleton symbols of x. We have m1 + 9m2 ≤ 2i and m1 +m2 = i, which implies

that m2 ≤ i/8 and so m1 ≥ d7i8 e.

Recall that from Proposition 2.9, if some ρd(n) > n−d, then there exists a

ρd′(2d
′) > d, on the main diagonal. Using the fact that any such string in the first

column with a counter-example must have at least 9 copies of each non-singleton

symbol, we can provide another equivalent statement.

Corollary 6.11: We have {ρd(n) ≤ n − d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for

d ≥ 2}.

The lemmas in this section, while involving many cases, have a certain

structural similarity. We suggest that it may be possible to automate the proof of

such lemmas in order to eliminate larger k-tuples. Any extension would further

improve the speed of computing ρd(2d), as outlined in Section 6.1.
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6.1 Efficient computation of ρd(2d)

There are two related ramifications from Proposition 6.1. The first is that this

result provides a completely non-computational proof that ρd(n) ≤ n − d for all

n− d ≤ 15. Coupled with the computation of ρ2(n) for 18 ≤ n ≤ 26, we can show

that ρd(n) ≤ n − d for all n − d ≤ 24. As we have also computed all values for

ρd(n) for 2 ≤ d ≤ 3 and n−d ≤ 32, we show that ρd(n) ≤ n−d for all n−d ≤ 32.

Corollary 6.12: For n− d ≤ 23, ρd(n) ≤ n− d.

Proof. Let x be a run-maximal (23, 46)-string. By Corollary 6.10, either r(x) = 23

and so ρ23+ε(46 + ε) ≤ 23 (ε > −23), or x has at least d7i
8
e = 21 singletons. By

Lemma 3.10, we can group all the singletons at the end of the string. As the

independent computations by multiple people have shown that ρ2(25) = 19, the

maximum number of runs for a (23, 46)-string is 19 if it contains any singletons.

We can use these results to speed the computational confirmation that

columns of the (d, n − d)-table satisfy the maximum number of runs conjecture.

Since by Lemma 3.10 we can move all singletons to the end of the string where they

cannot affect the number of runs, we need only consider the repetitive part which

requires at least 9 copies of each symbol. That is, we can assume a run-maximal

(d, 2d)-string x has the form x = yz where z consists of all the singletons in x.

Therefore, we only need to consider the strings y which are r-covered and in which

every symbol occurs at least 9 times.

There is an additional restriction we can put on the strings we need to

generate. While the string must be r-covered, that r-cover must also satisfy the

parity condition.
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Definition 6.13: [2] The r-cover { Si = (si, pi, 2) | 1 ≤ i ≤ m } of (d, n)-string

x satisfies the parity condition if for every 1 ≤ i < m, A(x[1..si+1 − 1]) ∩

A(x[si + 2pi..n]) ⊆ A(x[si+1..si + 2pi − 1]).

To satisfy the parity condition, for every overlap between elements in the

r-cover, any symbol which occurs both before and after the overlap must also occur

within the overlap of the elements.

Lemma 6.14: [2] Let ρi(2i) = i for i < d. The singleton-free portion of a run-

maximal (d, 2d)-string x with all its singletons at the end has an r-cover satisfying

the parity condition.

Proof. Assume that x has v ≤ d−2 singletons, all at the end, by Lemma 3.10.

Then x = yz with y = x[1..2d − v] and z = x[2d − v + 1..2d]. Then, y is a

(d− v, 2d− v)-string and ρd(2d) = r(x) = r(y) = ρd−v(2d− v). First we will show

that y has an r-cover, and then we will show that the r-cover satisfies the parity

condition.

Let us assume that y is not r-covered with { Si } for 1 ≤ i ≤ m. Therefore,

for some 1 ≤ i ≤ 2d − n, ki(x) = 0. If i = 1 or i = 2d − v, then r(x) =

ρd(2d) = ρd(2d−1) = ρd−1(2d−2) which, by Property 2.4, contradicts x being run-

maximal. Therefore, consider 1 < i < 2d− v. If A(y[1..i−1]) = A(y[i+1..2d−v]),

then r(y) = r(y[1..i − 1]) + r(y[i + 1..2d − v]) ≤ ρd(i − 1) + ρd(2d − v − i) ≤

(i − 1 − d) + (2d − v − i − d) = d − v − 1 < d. Again, a contradiction that x is

run-maximal as we can always achieve d runs with d adjacent pairs. Therefore,

there must be some symbol c so that either c ∈ A(y[1..i−1]) r A(y[i+1..2d−v])

or c ∈ A(y[i+1..2d−v]) r A(y[1..i−1]). Without loss of generality, assume c ∈

A(y[1..i−1]) rA(y[i+1..2d−v]). We proceed in a manner similar to the proof of
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Lemma 3.7. Permute the alphabet of y[1..i−1] to ỹ[1..i−1] such that ỹ[i−1] = c.

Then let y′ = y[i]ỹ[1..i − 1]y[i + 1..2d − v], and so r(y) = r(y′) by the run-

maximality of x. However, this results in k1(y
′) = 0, which was already eliminated

by contradiction. Therefore, y has an r-cover.

Now we turn to the proof that the r-cover of y must satisfy the parity

condition. Let us assume that the r-cover of y does not satisfy the parity condition.

Assume that for some 1 ≤ t < m there is a symbol c such that c ∈ A(y[1..st+1−1])

and c ∈ A(y[st + 2pt..2d − v]) but c /∈ A(y[st+1..st + 2pt − 1]. This includes the

possibility that st + 2pt = st+1 and so A(y[st+1..st + 2pt − 1]) = ∅. Let us replace

all copies of c in y[1..st− 1] with ĉ /∈ A(x). This results in a new (d+ 1, n)-string

ŷ with r(ŷ) = r(y). This gives ρd(2d) = r(y) = r(ŷ) ≤ ρd+1(2d) = ρd−1(2d− 2).

However, by Property 2.4, ρ − d(2d) > ρd−1(2d − 2), a contradiction. Therefore,

there cannot be a symbol c found in bothA(y[1..st+2pt−1]) andA(y[st+1..2d−v])

but not in A(y[st+1..st + 2pt − 1]).

While we required a computational check to eliminate the possibility of

adjacent r-cover in the run-maximal strings, we can eliminate them a priori in

this case.

Corollary 6.15: [2] Let ρi(2i) = i for all i < d. Either ρd(2d) = d or every

run-maximal (d, 2d)-string x with v > 0 singletons has an overlapping r-cover

satisfying the parity condition.

Proof. Once again, assume that x has v ≤ d−2 singletons, all at the end, by

Lemma 3.10. Then x = yz with y = x[1..2d− v] and z = x[2d− v + 1..2d]. By

Lemma 6.14 if y has an adjacent r-cover { Si } for 1 ≤ i ≤ m such that st+2pt = st1
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for some 1 ≤ t < m, then A(y[1..st + 2pt − 1]) ∩ A(y[st+1..2d − v]) = ∅. Let

d1 = d(y[1..st + 2pt− 1]), n1 = st + 2pt− 1, d2 = d− v− d1, and n2 = 2d− v−n1.

Then r(y) = r(y[1..st + 2pt − 1]) + r(y[st+1..2d − v]) ≤ ρd1(n1) + ρd2(n2) ≤

n1 − d1 + n2 − d2 = d.

A computer program could be written to generate only the strings with

overlapping r-covers which satisfy the parity condition and have at least copies

of each symbol. Such a program could then be used to show that the maximum

number of runs conjecture holds for columns of the (d, n− d)-table even where it

is infeasible to compute the actual ρd(n) values.
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Chapter 7

Conclusion

We have explored the function ρd(n), the maximum number of runs over all strings

of length n with exactly d distinct symbols. We presented the values of ρd(n) in

a (d, n − d) table, in order to illustrate properties of the ρd(n) function, includ-

ing avenues for recursion involving both variables d and n. Then we explored

structural properties of run-maximal strings in the form of the core vector and

r-cover, and introduced the concept of ρ−d (n)-density. We combined these ideas to

develop an algorithm to compute ρd(n) values in a two stage process. We exploit

the availability of a sufficient lower bound to reduce the search space enabling us

to exhaustively search only those runs which could exceed this lower bound. The

implementation of this algorithm was used to extend the best known computa-

tions from ρ2(60) to ρ2(74), and to compute values of ρd(n) for d ≥ 3 which had

not previously been considered. Finally, we discuss the structural properties of a

shortest (d, n)-string x such that r(x) > n− d, should such a string exist. These

properties can be used in a computer program to determine if ρd(n) ≤ n−d holds

for larger values of d and n than for which the values of ρd(n) can be computed.
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7.1 Connection with the maximum number of

distinct squares conjecture

Recall from Section 1.8.2 that s(x) is the number of primitively rooted distinct

squares in x and σ(n) is the maximum value of s(x) over all strings of length n.

Having presented our results on runs, we briefly touch on the recent results by

Deza, Franek, and Jiang with respect to square-maximal strings and discuss the

similarities with our work.

Deza, Franek, and Jiang [15], inspired by our new results on run-maximal

strings, began exploring a similar extension for square-maximal strings. They

introduce the function σd(n), the maximum number of primitively rooted distinct

squares over all strings of length n with d distinct symbols. They present the values

of σd(n) in a (d, n−d)-table, just as we do for ρd(n) values. Many properties of the

ρd(n) function and therefore the (d, n− d)-table for runs correspond to properties

of σd(n) and the (d, n− d)-table for distinct squares.

• Values are non-decreasing along a row: σd(n) ≤ σd(n+1) [15] corresponding

to Property 2.1.

• Values are non-decreasing down a column: σd(n) ≤ σd+1(n + 1) [15] corre-

sponding to Property 2.2.

• Values are increasing down a diagonal to the right: σd(n) < σd+1(n+ 2) [15]

corresponding to Property 2.4.

• Every value below the main diagonal in a column is equal to the value on the

main diagonal in the same column: σd(n) = σn−d(2n−2d) for 2 ≤ d ≤ n ≤ 2d

[15] corresponding to Property 2.8.
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• If there is a counter-example, it can be drawn to the main diagonal: σd(n) >

n− d↔ σd′(2d
′) [15] corresponding to Corollary 2.10.

• The two values immediately above the main diagonal are equal: σd(2d+1) =

σd−1(2d) [14] corresponding to part of Proposition 2.13.

One property of run-maximal strings which does not apply to square-

maximal strings is Property 2.3–that increasing the length by 2 while holding

the number of distinct symbols constant always results in an increase of the max-

imum number of runs. This property cannot apply to square-maximal strings as

appending either an aa or a bb to the end of the string will not increase the number

of distinct squares if both squares already exist in the string.

Conversely, there is a limit to how much the maximum number of distinct

squares can increase as the string is extended, which is only conjectured to hold

in the case of run-maximal strings. That is, σd(n + 1)− σd(n) ≤ 2. The increase

moving down the main diagonal can also be bounded: σd+1(2d+ 2)− σd(2d) ≤ 2

[14].

In Proposition 6.1, we are able to eliminate the possibility of 2- through

8-tuples in a conceptual first (d, n)-string x with r(x) > n−d. Deza, Franek, and

Jiang [15] have been able to make some steps in this direction, but the approach

has proven to be more complicated for square-maximal strings. They are able to

eliminate pairs, and some forms of other k-tuples.

Just as we develop the concept of an r-cover, Deza, Franek, and Jiang [14]

introduce the s-cover, an analogous structure dealing with distinct squares. They

exploit the s-cover structure and a density argument, combined with a heuristic

search, in order to speed the computation of σd(n) values. They have been able
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to compute σ2(n) for all n ≤ 53 as well as several ρd(n) values for d ≥ 3.

Strings exist that are both run- and square-maximal. Based on a compar-

ison of the run- and square-maximal strings, Jiang [32] suggests that this occurs

exactly when n = 2d+ i when i = 1, 2, 3, and 5 for d ≥ 2.

Finally, while our computational results have supported the conjecture that

for every n > 2, ρ2(n) = ρ(n), Deza, Franek, and Jiang [14] have shown that cases

exist where σ3(n) > σ2(n). This occurs when n = 33, and could exist for other

values.

7.2 Future work

Barring the development of an exact formula, it is desirable to compute additional

values of ρd(n). Currently we are at the bounds of tractability with this approach.

An attempt to compute ρ2(75) using the approach outlined has required over 110

days worth of computing time on SHARCNET’s Orca cluster without establish-

ing the value. The most run-dense (2, 75)-string x we currently have found has

r(x) = 64 = ρ2(74) Recall that determining ρd(n) when ρd(n) = ρd(n − 1) is

computationally more difficult than when r(x) > ρd(n− 1). We hope that further

structural insights will allow additional values of ρd(n) to be computed.

Beside being able to compute more values of ρd(n), it is possible to apply

the approach from Chapter 6 in order to confirm that ρd(n) ≤ n − d for larger

values of d and n.

While the difference between the conjectures ρd(n) ≤ n−d and ρ(n) ≤ n is

small for large n, we would like conclude by noting that ρd(n) = n−d for infinitely

many values of n and d while there are no known instances of where ρ(n) = n.
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