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Abstract

We consider the time horizon of a gambler in the optimization of horse race
betting through the use of chance constrained programming. The optimization
problem is formulated as a mixed integer nonlinear program for which global opti-
mal solutions are found using optimization tools. A novel approach to estimating
superfecta payouts is presented using maximum likelihood estimation. A com-
putational substantiation with historical race data found an increase in return of
over 10% using the chance constrained model.

1 Introduction

Beginning in the mid 1980’s, horse racing has witnessed the rise of betting syndi-
cates akin to hedge funds profiting from statistical techniques similar to high frequency
traders on stock exchanges [12]. This is possible as parimutuel wagering is employed
at racetracks, where money is pooled for each bet type, the racetrack takes a percent-
age, and the remainder is disbursed to the winners in proportion to the amount wagered.

Optimization in the horse racing literature can be traced back to Isaacs deriving a closed
form solution for the optimal win bets when maximizing expected profit in 1953 [9].
Hausch et al. [8] utilized an optimization framework to show inefficiencies in the place
and show betting pools using win bet odds to estimate race outcomes. In particular,
they used the Kelly criterion [13], maximizing the expected log utility of wealth and
found profitability when limiting the betting to when the expected return was greater
than a fixed percentage. More recently, Smoczynski and Tomkins derived a simple
procedure for the optimal win bets under the Kelly criterion using the KKT conditions
[16]. Although the Kelly criterion maximizes the asymptotic rate of asset growth, the
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volatility of wealth through time is too large for most, resulting in many professional
investors employing a fractional Kelly criterion [17], which has been shown to possess
favourable risk-return properties by MacLean et al. [15]. We investigate a further man-
ner of risk management in the form of a chance constraint, taking into account the time
horizon of the bettor, which can be employed in conjunction with the Kelly criterion.

There are several different types of wagers one can place on horses, but in order to
best display the effect of the chance constraint, we concentrate on the riskiest of bets
on a single race, the superfecta, which requires the bettor to pick, in order, the first 4
finishers.

2 Optimization Model

2.1 Time Horizon

To motivate the discussion, we examine the 4 horse outcome probabilities of race 5 on
March 20, 2014 at Flamboro Downs, Hamilton, Ontario, Canada. Information about
the race dataset and how these probabilities are estimated can be found in Section
3. Let S represent the set of top 4 horse finishes with each s ∈ S corresponding to
a sequence of 4 horses. If we bet on this race an infinite number of times, then the
average number of races before a superfecta bet on outcome s pays off would be 1

πs
,

where πs is the outcome’s probability. Summary statistics for the average wait time is
in the following table.

Statistic Races

min 141

max 566, 225

median 13, 600

mean 38, 192

Table 1: Average wait time statistics

The median wait time for a superfecta bet to payoff is then over 11 seasons with roughly
1,200 races per season. Assuming the horseplayer requires some form of regular income
or desires to at least turn a profit every season, consideration of the likelihood of
receiving a payoff is warranted. In particular, we can limit betting strategies to those
which pay out with high probability over a number of races equal to the desired time
horizon, τ . Let x = {xs} be our decision variables dictating how much to wager on
each outcome s. For a betting decision x̂, let Bx̂ ∼ binomial(τ, πx̂), where πx̂ is the
probability of a payout. In order to enforce the gambler’s time horizon, we require that
P(Bx̂ ≥ 1) ≥ 1 − α, where α is our error tolerance, which is chosen arbitrarily small.

Rearranging, we require πx̂ ≥ 1− α 1
τ . Assuming independence between races, limiting
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betting decisions to having a payout probability of at least 1−α 1
τ ensures that a payout

will occur with probability at least 1− α over τ races.

2.2 Optimization Program

The objective is to maximize the exponential rate of return. Let Pρ(x) be the random
payout given our decision vector x. The payout uncertainty stems from the result of
the race, ρ, with S as its sample space. Let w be the current wealth of the gambler.
Incorporating the gambler’s time horizon through the use of a chance constraint, the
optimization problem is below.

max E log(Pρ(x) + w −
∑
s∈S

xs)

s.t.
∑
s∈S

xs ≤ w

P(Pρ(x) > 0|
∑
s∈S

xs > 0) ≥ 1− α
1
τ

xs ≥ 0 ∀s ∈ S

The chance constraint is conditional on there being favourable bets to be placed, as we
do not want to decrease our expected utility below log(w) to satisfy it. We assume that
the frequency with which we are forced to abstain from gambling is sufficiently small
so as not to significantly alter our effective time horizon.

3 Computational Substantiation

The optimization model was tested using historical race data from the 2013-2014 season
at Flamboro Downs. This amounted to a total of 1,168 races. Race results, includ-
ing the payouts, pool sizes, and final win bet odds were collected from TrackIT [3].
Handicapping data, generated by CompuBet [4], was collected from HorsePlayer Inter-
active [6]. The first 70% of the race dataset was used to calibrate the race outcome
probabilities and payout models, with the remaining 30% of races used for out of sample
testing.

3.1 Estimating Outcome Probabilities and Payouts

The multinomial logistic model, first proposed by Bolton and Chapman [1], was used to
estimate win probabilities. Given a vector of handicapping data on each horse h, vh, the
horses are given a value Vh = βTvh, and assigned winning probabilities πh = eVh∑n

i=1 e
Vi

.

A three factor model was used, including the log of the public’s implied win probabil-
ities from the win bet odds, log πph, and the log of two CompuBet factors, which were
all found to be statistically significant. The analysis was performed using the mlogit
package [5] in R. The discount model, derived by Lo and Bacon-Shone [14], was used
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to estimate the order probabilities, πijkl = πi
π
λ1
j∑

s 6=i π
λ1
s

π
λ2
k∑

s 6=i,j π
λ2
s

π
λ3
l∑

s 6=i,j,k π
λ3
s

, where optimal

λi’s were determined using multinomial logistic regression.

Let Q and Qs be the superfecta pool size, and the total amount wagered on sequence
s. The only information available to bettors is the value of Q. The approach taken
to estimate Qs is motivated by the work of Kanto and Renqvist [11] who fit the win
probabilities of the Harville model [7] to the money wagered on Quinella bets using
multinomial maximum likelihood estimation. The amount wagered on sequence s is
Qs = Q(1−t)

Ps
, where t = 24.7% is the track take at Flamboro Downs and Ps is the $1

payout. The minimum superfecta bet allowed in practice is $0.2 with $0.2 increments,
so let n = 5Qs be the number of bets placed on s out of N = 5Q, which we assume
follows a binomial distribution. We model the public’s estimate of outcome probabilities
using the discount model with their implied win probabilities, so for s = {i, j, k, l},
πps =

(πpi )
θ1∑

(πph)
θ1

(πpj )
θ2∑

h 6=i(π
p
h)
θ2

(pipk)
θ3∑

h 6=i,j(π
p
h)
θ3

(πpl )
θ4∑

h 6=i,j,k(π
p
h)
θ4

= (πps )
u

(πps )l
. The likelihood function, using

data from R historical races assumed to be independent, with wr being the winning
sequence in race r, is L(θ) ∝ ΠR

r=1(π
p
wr)

nr(1−πpwr)
Nr−nr . The negative log-likelihood is a

difference of convex functions, − logL(θ) ∝
∑R

r=1Nr log((πpwr)
l)−(nr log((πpwr)

u)+(Nr−
nr) log((πpwr)

l − (πpwr)
u)). This function was minimized twice using fminunc in Matlab,

the first with an initial guess that the public uses the Harville model, θi = 1, the second
assuming that the public believes superfecta outcomes are purely random, θi = 0, with

both resulting in the same solution. The payout function is Ps(x) = xs
(Q+

∑
u∈S xu)(1−t)
Qs+xs

,
where we take Qs = πpsQ, the expected amount wagered on s.

3.2 Optimization Program Formulation

Our optimization program now has the following form. When testing the model we
round down the optimal solution to the nearest 0.2 to avoid overbetting. The zs vari-
ables are used to indicate when xs ≥ 0.2, implying Ps,ξs(x) > 0 and z̄ nullifies the
chance constraint when

∑
s∈S xs = 0.

max
∑
s∈S

πs log(xs
(Q+

∑
u∈S xu)(1− t)
Qs + xs

+ w −
∑
u∈S

xu)

s.t.
∑
s∈S

xs ≤ wz̄∑
s∈S

πszs ≥ (1− α
1
τ )z̄(

Qs + 0.2

Qs

)zs
≤ Qs + xs

Qs

∀s ∈ S

z̄, zs ∈ {0, 1} ∀s ∈ S
xs ≥ 0 ∀s ∈ S

We use the 1 to 1 mapping proposed by Kallberg and Ziemba [10], ys = log(xs + Qs),
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which results in the following program whose linear relaxation is convex.

max
∑
s∈S

πs log(Q+ w − (t+ (1− t)Qse
−ys)

∑
u

eyu)

s.t.
∑
s∈S

eys ≤ wz̄ +Q∑
s∈S

πszs ≥ (1− α
1
τ )z̄

zs ln

(
Qs + 0.2

Qs

)
≤ ys − logQs ∀s ∈ S

z̄, zs ∈ {0, 1} ∀s ∈ S
ys ≥ log(Qs) ∀s ∈ S

3.3 Results

The model was tested on a total of 350 races. Given our optimal betting solution, the
realized payout was calculated by adjusting the published payout to account for our
wagers and breakage. The gambler’s wealth over the course of the races was calculated
using the optimization program with and without the chance constraint, Opt+ and Opt
respectively. Initial wealth was set to $1000, with the time horizon set to τ = 350 and
α = 0.01. All testing was conducted on a Windows 7 Home Premium 64-bit, Intel Core
i5-2320 3GHz processor with 8 GB of RAM. The implementation was done in Matlab
R2012a with the OPTI toolbox, using the IPOPT[18] and Bonmin[2] solvers.
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1,600
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Figure 1: Wealth over the course of 350 races at Flamboro Downs.

The result in Figure 1 is intuitive, as Opt+ attempts to mimic Opt, while generally
having to take on extra bets to satisfy the chance constraint. This extra cost results
in a lower wealth until one of these extra wagers does in fact payout, which occured at
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approximately race 280, resulting in a superior return of 28.8% compared to 17.8% for
Opt.

4 Conclusion

We presented a chance constrained optimization model for parimutuel horse race bet-
ting, as well as a method for estimating superfecta bet payouts. Profitability was
achieved when employing the Kelly criterion, with a superior return when taking into
consideration the gambler’s time horizon.
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