
McMaster University

Advanced Optimization Laboratory

Title:

Interior Point and Semidefinite Approaches

in Combinatorial Optimization

Authors:

Kartik Krishnan, Tamás Terlaky

AdvOL-Report No. 2004/2

March 2004, Hamilton, Ontario, Canada

Interior Point and Semidefinite Approaches in

Combinatorial Optimization

Kartik Krishnan ∗ and Tamás Terlaky †

Department of Computing & Software

McMaster University

Hamilton, Ontario, L8S 4K1

Dedicated to the memory of Jos F. Sturm
April 5, 2004

Abstract

Interior-point methods (IPMs), originally conceived in the context of lin-

ear programming have found a variety of applications in integer programming,

and combinatorial optimization. This survey presents an up to date account

of IPMs in solving NP-hard combinatorial optimization problems to optimal-

ity, and also in developing approximation algorithms for some of them. The

surveyed approaches include non-convex potential reduction methods, interior

point cutting plane methods, the generic interior point method for the semidef-

inite programming (SDP) problem, branch and cut approaches based on SDP

relaxations, approximation algorithms based on SDP formulations, and finally

methods employing successive convex approximations of the underlying combi-

natorial optimization problem.

Keywords: Interior Point Methods, Integer Programming and Combinatorial Op-

timization, Semidefinite Programming, Branch and cut, Approximation Algorithms,

Successive convex approximations.

∗Email: kartik@optlab.mcmaster.ca
†Email: terlaky@mcmaster.ca

2

1 Introduction

Optimization problems seem to divide naturally into two categories: those with con-

tinuous variables, and those with discrete variables, which we shall hereafter call

combinatorial problems. In continuous problems, we are generally looking for a set

of real numbers or even a function; in combinatorial optimization, we are looking for

certain objects from a finite, or possibly countably infinite set, typically an integer,

graph etc. These two kinds of problems have different flavors, and the methods for

solving them are quite different too. In this survey paper on interior point methods

(IPMs) in combinatorial optimization, we are in a sense at the boundary of these two

categories, i.e., we are looking at IPMs, that represent continuous approaches towards

solving combinatorial problems usually formulated using discrete variables.

To better understand why one would adopt a continuous approach to solving dis-

crete problems, consider as an instance the linear programming (LP) problem. The

LP problem amounts to minimizing a linear functional over a polyhedron, and arises

in a variety of applications in combinatorial optimization. Although the LP is in

one sense a continuous optimization problem, it can be viewed as a combinatorial

problem. The set of candidate solutions are extreme points of the underlying poly-

hedron, and there are only a finite (in fact combinatorial) number of these. Before

the advent of IPMs, the classical algorithm for solving LP’s was the simplex algo-

rithm. The simplex algorithm can be viewed as a combinatorial approach to solving

an LP, and it deals exclusively with the extreme point solutions; at each step of the

algorithm the next candidate extreme point solution is chosen in an attempt to im-

prove some performance measure of the current solution, say the objective value. The

improvement is entirely guided by local search, i.e., the procedure only examines a

neighboring set of configurations, and greedily selects one that improves the current

solution. As a result the search is quite myopic, with no consideration given to evalu-

ate whether the current move is actually useful globally. The simplex method simply

lacks the ability for making such an evaluation. Thus, although, the simplex method

is quite an efficient algorithm in practice, there are specially devised problems on

which the method takes a disagreeably exponential number of steps. In contrast, all

polynomial-time algorithms for solving the LP employ a continuous approach. These

include the ellipsoid method [55], or IPMs that are subsequent variants of the original

method of Karmarkar [73]. It must be emphasized here that IPMs have both better

complexity bounds than the ellipsoid method (we will say more on this in the subse-

quent sections), and the further advantage of being very efficient in practice. For LP

3

it has been established that for very large, sparse problems IPMs often outperform

the simplex method. IPMs are also applicable to more general conic (convex) opti-

mization problems, with efficiently computable self-concordant barrier functions (see

the monographs by Renegar [136] and Nesterov & Nemirovskii [113]). This includes

important classes of optimization problems such as second order cone programming

(SOCP) and semidefinite programming (SDP). For such problems, IPMs are indeed

the algorithm of choice.

We now present the underlying ideas behind primal-dual IPMs (Roos et al. [137],

Wright [159], Ye [163], and Andersen et al. [3]) the most successful class of IPMs

in computational practice. For ease of exposition, we consider the LP problem. We

will later consider extensions to convex programming problems, especially the SDP,

in Section 4.2. Consider the standard linear programming problem (LP)

min cT x

s.t. Ax = b,

x ≥ 0,

(LP)

with dual
max bT y

s.t. AT y + s = c,

s ≥ 0,

(LD)

where m and n represent the number of constraints and variables in the primal prob-

lem (LP), with m < n. Also, c, x, and s are vectors in Rn, b and y are vectors in Rm,

and A is an m × n matrix with full row rank. The constraints x, s ≥ 0 imply that

these vectors belong to Rn
+, i.e., all their components are non-negative. Similarly,

x > 0 implies that x ∈ Rn
++ (the interior of Rn

+), i.e., all components of x are strictly

positive.

The optimality conditions for LP include primal and dual feasibility and the com-

plementary slackness conditions, i.e.,

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

x ◦ s = 0,

(1)

where x ◦ s = (xisi), i = 1, . . . , n is the Hadamard product of the vectors x and s.

Consider perturbing the complementarity slackness conditions in (1) to x◦s = µe,

where e is the all-ones vector and µ > 0 is a given scalar. Neglecting the inequality

4

constraints in (1) for the moment this gives the following system:

Ax = b,

AT y + s = c,

x ◦ s = µe.

(2)

A typical feasible primal-dual IPM for LP starts with a strictly feasible (x, y, s) so-

lution in Rn
++, i.e. x, s > 0. The perturbed system (2) has an unique solution

(xµ, yµ, sµ) for each µ > 0. Moreover, the set {(xµ, yµ, sµ), µ > 0}, also called the

central path, is a smooth, analytic curve converging to an optimal solution (x∗, y∗, s∗)

as µ → 0. In fact, this limit point is in the relative interior of the optimal set, and is

a strictly complementary solution, i.e., x∗ + s∗ > 0 and x∗ ◦ s∗ = 0.

If we solve (2) by Newton’s method, we get the following linearized system

A∆x = 0,

AT ∆y + ∆s = 0,

s∆x + x∆s = µe − x ◦ s.

This system has a unique solution, namely

∆y = (AXS−1AT)−1(b − µAs−1),

∆s = −AT ∆y,

∆x = µs−1 − x − x ◦ s−1 ◦ ∆s,

(3)

where X = Diag(x) and S = Diag(s) are diagonal matrices, whose entries are the

components of x and s, respectively. Since the constraints x, s > 0 were neglected in

(2), one needs to take damped Newton steps. Moreover, the central path equations (2)

are nonlinear and so it is impossible to obtain the point (xµ, yµ, sµ) on the central path

via damped Newton iterations alone. One requires a proximity measure δ(x, s, µ) (see

Roos et al. [137], Wright [159]) that measures how close the given point (x, y, s) is

to the corresponding point (xµ, yµ, sµ) on the central path. Finally, IPMs ensure that

the sequence of iterates {(x, y, s)} remain in some neighborhood of the central path

by requiring that δ(x, s, µ) ≤ τ for some τ > 0, where τ is either an absolute constant

or may depend on n.

We are now ready to present a generic IPM algorithm for LP.

Generic Primal-Dual IPM for LP

Input: A, b, c, a starting point (x0, y0, s0) satisfying the interior point condition (see

Roos et al. [137] and Wright [159]), i.e., x0, s0 > 0, Ax0 = b, AT y0 + s0 = c, and

5

x0 ◦ s0 = e, a barrier parameter µ = 1, a proximity threshold τ > 0 such that

δ(x0, s0, µ) ≤ τ , and an accuracy parameter ǫ > 0.

1. Reduce the barrier parameter µ.

2. If δ(x, s, µ) > τ compute (∆x, ∆y, ∆s) using (3).

3. Choose some α ∈ (0, 1] such that x+α∆x, s+α∆s > 0, and proximity δ(x, s, µ)

appropriately reduced.

4. Set (x, y, s) = (x + α∆x, y + α∆y, s + α∆s).

5. If the duality gap xT s < ǫ then stop,

else if δ(x, s, µ) ≤ τ goto step 1,

else goto step 2.

We can solve an LP problem with rational data, to within an accuracy ǫ > 0, in

O(
√

n log(1
ǫ
)) iterations (see Roos et al. [137]) for more details). This is the best iter-

ation complexity bound for a primal-dual interior point algorithm. Most combinato-

rial optimization problems, other than flow and matching problems are NP-complete,

all of which are widely considered unsolvable in polynomial time (see Garey & John-

son [46] and Papadimitriou & Steiglitz [119] for a discussion on intractability and the

theory of NP completeness). We are especially interested in these problems. One way

of solving such problems is to consider successively strengthened convex relaxations

(SDP/SOCP) of these problems in a branch-cut framework, and employing IPMs to

solving these relaxations. On the other hand, semidefinite programming (SDP) has

been applied with a great deal of success in developing approximation algorithms

for various combinatorial problems, the showcase being the Goemans & Williamson

[47] approximation algorithm for the maxcut problem. The algorithm employs an

SDP relaxation of the maxcut problem which can be solved by IPMs, followed by

an ingenious randomized rounding procedure. The approximation algorithm runs in

polynomial time, and has a worst case performance guarantee. The technique has

subsequently been extended to other combinatorial optimization problems.

We introduce two canonical combinatorial optimization problems, namely the

maxcut and maximum stable set problems, that will appear in the approaches men-

tioned in the succeeding sections.

1. Maxcut Problem: Let G = (V,E) denote an edge weighted undirected graph

without loops or multiple edges. Let V = {1, . . . , n}, E ⊂ {{i, j} : 1 ≤ i < j ≤

6

n}, and w ∈ R|E|, with {i, j} the edge with endpoints i and j, with weights wij.

We assume that n = |V |, and m = |E|. For S ⊆ V , the set of edges {i, j} ∈ E

with one endpoint in S and the other in V \S form the cut denoted by δ(S).

We define the weight of the cut as w(δ(S)) =
∑

{i,j}∈δ(S) wij. The maximum cut

problem, denoted as (MC), is the problem of finding a cut for which the total

weight is maximal.

2. Maximum Stable Set Problem: Given a graph G = (V,E), a subset V ′ ⊂ V

is called a stable set, if the induced subgraph on V ′ contains no edges. The

maximum stable set problem, denoted by (MSS), is to find the stable set of

maximum cardinality.

It must be mentioned that although (MC) and (MSS) are NP-complete problems, the

maxcut problem admits an approximation algorithm, while no such algorithms exist

for the maximum stable set problem unless P = NP (see Arora & Lund [10] for a

discussion on the hardness of approximating various NP-hard problems).

This paper is organized as follows: Section 2 deals with non-convex potential

function minimization, among the first techniques employing IPMs in solving diffi-

cult combinatorial optimization problems. Section 3 deals with interior point cutting

plane algorithms, especially the analytic center cutting plane method (ACCPM), and

the volumetric center method. These techniques do not require a knowledge of the

entire constraint set, and consequently can be employed to solve integer programs

(IPs) with exponential or possibly infinite number of constraints. They can also be

employed as a certificate to show certain IPs can be solved in polynomial time, to-

gether with providing the best complexity bounds. Section 4 discusses the complexity

of SDP, and provides a generic IPM for SDP. This algorithm is employed in solving

the SDP formulations and relaxations of integer programming problems discussed in

the succeeding sections. Although IPMs are the algorithms of choice for an SDP,

they are fairly limited in the size of problems they can handle in computational prac-

tice. We discuss various first order methods that exploit problem structure, and have

proven to be successful in solving large scale SDP’s in Section 5. Section 6 discusses

branch and cut SDP approaches to solving IPs to optimality, advantages and issues

involved in employing IPMs in branching, restarting, and solving the SDP relaxations

at every stage. Section 7 discusses the use of SDP in developing approximation al-

gorithms for combinatorial optimization. Section 8 discusses approaches employing

successive convex approximations to the underlying IP, including recent techniques

based on polynomial and copositive programming. We wish to emphasize that the

7

techniques in Section 8 are more of a theoretical nature, i.e., we have an estimate

on the number of liftings needed to solve the underlying IP to optimality, however

the resulting problems grow in size beyond the capacity of current state of the art

computers and software; this is in sharp contrast to the practical branch and cut

approaches in Section 6. We conclude with some observations in Section 9, and also

highlight some of the open problems in each area.

The survey is by no means complete; it represents the authors biased view of

this rapidly evolving research field. The interested reader is referred to the books by

Chvátal [30], Papadimitriou & Steiglitz [119], and Schrijver [138] on combinatorial

optimization and LP & IP. The books by Roos et al. [137], Wright [159], and Ye [163]

contain a treatment of IPMs in linear optimization. A recent survey on SOCP appears

in Alizadeh & Goldfarb [1]. Excellent references for SDP include the survey papers by

Vandenberghe & Boyd [155], Todd [147], the SDP handbook edited by Wolkowicz et

al. [160], and the recent monograph by De Klerk [33]. A repository of recent papers

dealing with interior point approaches to solving combinatorial optimization problems

appear in the following websites: Optimization Online [115], Interior Points Online

[67], and the SDP webpage [64] maintained by Helmberg. Finally, recent surveys by

Laurent & Rendl [89] and Mitchell et al. [98] also complement the material in this

survey.

2 Non-convex potential function minimization

The non-convex potential function approach was introduced by Karmarkar et al.

[74, 75] as a nonlinear approach for solving integer programming problems. Warners

et al. [157, 158] also utilized this approach in solving frequency assignment problems

(FAP), and other structured optimization problems. We present a short overview of

the approach in this section.

Consider the following binary {−1, 1} feasibility problem:

find x̄ ∈ {−1, 1}n such that Āx̄ ≤ b̄. (4)

Let I denote the feasible set of (4). Binary feasibility problems arise in a variety

of applications. As an example we can consider the stable set problem on the graph

G = (V,E) with n = |V |. The constraints Āx ≤ b̄ are given by xi+xj ≤ 0, {i, j} ∈ E,

where the set of {−1, 1} vectors x ∈ Rn correspond to incidence vectors of stable sets

in the graph G, with xi = 1 if node i is in the stable set, and xi = −1 otherwise.

8

The problem (4) is NP-complete, and there is no efficient algorithm that would

solve it in polynomial time. Therefore, we consider the following polytope P, which

is a relaxation of I.

P = {x ∈ Rn : Ax ≤ b},

where A =









Ā

I

−I









, and b =









b̄

e

e









. Here I is the n × n identity matrix, and e is

the vector of all ones. Finding a vector x ∈ P amounts to solving an LP problem,

and can be done efficiently in polynomial time. Let P ′ denote the relative interior of

P, i.e., P ′ = {x ∈ Rn : Ax < b}. Since −e ≤ x ≤ e, ∀x ∈ P, we have xT x ≤ n,

with equality occurring if and only if x ∈ I. Thus, (4) can also be formulated as the

following concave quadratic optimization problem with linear constraints.

max
n
∑

i=1

x2
i

s.t. x ∈ P.

(5)

Since the objective function of (5) is non-convex, this problem is NP-complete as well.

However, the global optimum of (5), when (4) is feasible, corresponds to ±1 binary

solutions of this problem.

Consider now a non-convex potential function φ(x), where

φ(x) = log
√

n − xT x − 1
m

m
∑

i=1

log si

and

si = bi −
n
∑

j=1

aijxj, i = 1, . . . ,m

are the slacks in the constraints Ax ≤ b. We replace (5) in turn by the following

non-convex optimization problem

min φ(x)

s.t. x ∈ P.
(Pφ)

Assuming I 6= φ, a simple observation reveals that x∗ is a global minimum of (Pφ)

if and only if x∗ ∈ I. To see this, note that since φ(x) = log
(

(n−xT x)
1
2

Πm
i=1

(bi−aT
i

x)
1
m

)

,

the denominator of the log term of φ(x) is the geometric mean of the slacks, and

is maximized at the analytic center of the polytope P, whereas the numerator is

minimized when x ∈ I, since −e ≤ x ≤ e, ∀x ∈ P. Karmarkar et al. [74, 75] solve

9

(Pφ) using an interior point method. To start with, we will assume a strictly interior

point, i.e., x0 ∈ P ′. The algorithm generates a sequence of points {xk} in P ′. In

every iteration we perform the following steps:

1. Minimize a quadratic approximation of the potential function over an inscribed

ellipsoid in the feasible region P around the current feasible interior point, to

get the next iterate.

2. Round the new iterate to an integer solution.

If this solution is feasible the problem is solved,

else goto step 1.

3. When a local minimum is found, modify the potential function to avoid running

into this minimum again, and restart the process.

These steps will be elaborated in more detail in the subsequent sections.

2.1 Non-convex quadratic function minimization

We elaborate on Step 1 of the algorithm in this subsection. This step is an interior

point algorithm to solve (Pφ). It mimics a trust region method, except that the trust

region is based on making good global approximations to the polytope P.

Given xk ∈ P ′, the next iterate xk+1 is obtained by moving in a descent direction

∆x from xk, i.e., a direction such that φ(xk + α∆x) < φ(xk), where α is an appro-

priate step length. The descent direction ∆x is obtained by minimizing a quadratic

approximation of the potential function about the current point xk over the Dikin el-

lipsoid, which can be shown to be inscribed in the polytope P. The resulting problem

(Pr) solved in every iteration is the following:

min 1
2
(∆x)T H(∆x) + hT (∆x)

s.t. (∆x)T AT S−2A(∆x) ≤ r2,
(Pr)

for some 0 ≤ r ≤ 1. Here S = Diag(s) and H and h are the Hessian, and the gradient

of the potential function φ(x), respectively.

The problem (Pr), a trust region subproblem for some rℓ ≤ r ≤ ru, is approxi-

mately solved by an iterative binary search algorithm (see Conn et al. [31], Karmarkar

[74], Vavasis [156]), in which one solves a series of systems of linear equations of the

form

(H + µAT S−2A)∆x = −h,

10

where µ > 0 is a real scalar. This system arises from the first order KKT optimality

condition for (Pr). Since there are two iterative schemes at work, we will refer to the

iterations employed in solving (Pφ) as outer iterations, and the iterations employed

in solving (Pr) as inner iterations. In this terminology, each outer iteration consists

of a series of inner iterations. We concentrate on the outer iterations first. Assume

for simplicity that (Pr) is solved exactly in every outer iteration for a solution ∆x∗.

Let us define the S-norm of ∆x∗ as

||∆x∗||S =
√

(∆x∗)T AT S−2A(∆x∗).

Since H is indefinite, the solution to (Pr) is attained on the boundary of the Dikin

ellipsoid, giving r = ||∆x∗||S. On the other hand, the computed direction ∆x∗ need

not be a descent direction for φ(x), since the higher order terms are neglected in

the quadratic approximation. Karmarkar et al. [75] however show that a descent

direction can always be computed provided the radius r of the Dikin ellipsoid is

decreased sufficiently. In the actual algorithm in each outer iteration we solve (Pr)

for a priori bound (rℓ, ru) on r, and if the computed ∆x∗ is not a descent direction,

we reduce ru, and continue with the process. Moreover, we stop these outer iterations

with the conclusion that a local minimum is attained for (Pφ) as soon as the upper

bound ru falls below a user specified tolerance ǫ > 0.

We now discuss the inner iterations, where a descent direction ∆x is computed

for (Pr): assuming we are in the kth outer iteration we have as input the current

iterate xk, a multiplier µ, lower and upper bounds (rℓ, ru) on r, a flag ID, which

is false initially, and is set to true if during any inner iteration an indefinite matrix

(H + µAT S−2A) is encountered. The algorithm computes ∆x∗(µ) by solving the

following system of linear equations.

∆x∗(µ) = −(H + µAT S−2A)h.

We are assuming that µ > 0 is chosen so that (H + µAT S−2A) is positive definite. If

this is not true for the input µ, the value of µ is increased, and the flag ID is set to

true. This process is repeated until we have a nonsingular coefficient matrix. Once

∆x∗(µ) is computed, we compute r∗ = ||∆x∗(µ)||S. One of the following four cases

can then occur:

1. If r∗ ≤ rℓ and ID is false, an upper bound on µ has been found; set µupper = µ,

and µ is decreased either by dividing it by a constant > 1, or if a lower bound

µlower on µ already exists by taking the geometric mean of the current µ and

µlower. The direction ∆x is recomputed with this new value of µ.

11

2. If r∗ ≥ ru, a lower bound on µ has been found; set µlower = µ, and µ is increased,

either by multiplying it with some constant > 1, or if µupper already exists, by

taking the geometric mean of µ and µupper. The direction ∆x is recomputed

with this new value of µ.

3. If r∗ ≤ rℓ, and ID is true, decreasing µ will still lead to an indefinite matrix; in

this case the lower bound rℓ is reduced, and the direction ∆x is recomputed.

4. Finally, if rℓ ≤ r∗ ≤ ru, the direction ∆x is accepted.

2.2 Rounding schemes and local minima

We discuss Steps 2 and 3 of the algorithm in this subsection. These include techniques

to round the iterates to ±1 vectors, and schemes to modify the potential function to

avoid running into the same local minima more than once.

1. Rounding schemes: In Step 2 of the algorithm, the current iterate xk is

rounded to a ±1 solution x̄. Generally these rounding techniques are specific

to the combinatorial problem being solved, but two popular choices include:

(a) Round to the nearest ±1 vertex, i.e.,

x̄i = 1 if xk
i ≥ 0;

x̄i = −1 if xk
i < 0.

(b) We can obtain a starting point x0 by solving a linear relaxation of the

problem, using an IPM. The rounding can then be based on a coordinate-

wise comparison of the current solution point with the starting point, i.e.,

x̄i = 1 if xk
i ≥ x0

i ;

x̄i = −1 if xk
i < x0

i .

2. Avoiding the same local minima: After a number of iterations, the interior

point algorithm may lead to a local minimum. One way to avoid running into

the same local minimum twice is the following: Let x̄ be the rounded ±1 solution

and suppose x̄ /∈ I. It can be easily seen that

x̄T y = n, for y = x̄

x̄T y ≤ n − 2, ∀y ∈ {y ∈ Rn : yi ∈ {−1, 1}, y 6= x̄}.

12

Thus we can add the cut x̄T y ≤ n − 2 without cutting off any integer feasible

solution. After adding the cut the process is restarted from the analytic center

of the new polytope. Although there is no guarantee that we won’t run into the

same local minimum again, in practice, the addition of the new cut changes the

potential function and alters the trajectory followed by the algorithm.

Warners et al. [157, 158] consider the following improvement in the algorithm arising

from the choice of a different potential function: For the potential function φ(x)

discussed earlier in the section, the Hessian H at the point xk is given by

H = ∇2φ(xk)

= − 1
f0

I − 2
f2
0

xkxkT
+ 1

n
AT S−2A.

For a general xk this results in a dense Hessian matrix, due to the outer product term

xkxkT
. This increases the computational effort in obtaining ∆x since we have now to

deal with a dense coefficient matrix. The sparsity of A can be utilized by employing

rank 1 updates. Instead, Warners et al. [157, 158] introduce the potential function.

φw(x) = (n − xT x) −
m
∑

i=1

wi log si,

where w = (w1, . . . , wm)T is a nonnegative weight vector. In this case the Hessian

Hw = −2I + AT S−1WS−1A, where W = Diag(w). Now Hw is a sparse matrix,

whenever the product AT A is sparse, and this fact can be exploited to solve the

resulting linear system more efficiently. The weights wk
i → 0 during the course of

the algorithm. Thus, initially when wk > 0, the iterates xk avoid the boundary of

the feasible region, but subsequently towards optimality, these iterates approach the

boundary, as any ±1 feasible vector is at the boundary of the feasible region.

The technique has been applied to a variety of problems including satisfiability

[68], set covering [75], inductive inference [69], and variants of the frequency assign-

ment problem [157, 158].

3 Interior point cutting plane methods

In this section we consider interior point cutting plane algorithms, especially the

analytic center cutting plane method (ACCPM) (Goffin & Vial [51] and Ye [163])

and the volumetric center method (Vaidya [154] and Anstreicher [7, 9, 8]). These

techniques are originally designed for convex feasibility or optimization problems.

13

To see how this relates to combinatorial optimization, consider the maxcut problem

discussed in Section 1. The maxcut problem can be expressed as the following {−1, 1}
integer programming problem.

max wT x

s.t. x(C\F) − x(F) ≤ |C| − 2 ∀ circuits C ⊆ E

and all F ⊆ C with |F | odd,

x ∈ {−1, 1}m.

(6)

Here wij represents the weight of edge {i, j} ∈ E. Let CHULL(G) represent the con-

vex hull of the feasible set of (6). We can equivalently minimize the linear functional

wT x over CHULL(G), i.e., we have replaced the maxcut problem via an equivalent

convex optimization problem. Unfortunately, an exact description of CHULL(G)

is unknown, and besides this may entail an exponential set of linear constraints.

However, we can solve such problems by using interior point cutting plane methods

discussed in this section.

Although we are primarily interested in optimization, we motivate these cutting

plane methods via the convex feasibility problem; we will later consider extensions

to optimization. Let C ⊆ Rm be a convex set. We want to find a point y ∈ C. We

will assume that if the set C is nonempty then it contains a ball of radius ǫ for some

tolerance ǫ > 0. Further, we assume that C is in turn contained in the m dimensional

unit hypercube given by {y ∈ Rm : 0 ≤ y ≤ e}, where e is the all ones vector. We

also define L = log 1
ǫ
.

Since each convex set is the intersection of a (possibly infinite) collection of half-

spaces, the convex feasibility problem is equivalent to the following (possibly semi-

infinite) linear programming problem.

Find y satisfying AT y ≤ c,

where A is a m× n matrix with independent rows, and c ∈ Rn. As discussed earlier,

the value of n could be infinite. We assume we have access to a separation oracle.

Given ȳ ∈ Rm, the oracle either reports that ȳ ∈ C, or it will return a separating

hyperplane a ∈ Rm such that aT y ≤ aT ȳ for every y ∈ C. Such a hyperplane which

passes through the query point ȳ /∈ C will henceforth be referred to as a central cut.

A weakened version of this cutting plane, hereafter referred to as a shallow cut, is

aT y ≤ aT ȳ + β, for some β > 0.

14

Generic cutting plane algorithm

Input: Let P ⊇ C be a computable convex set.

1. Choose ȳ ∈ P ⊆ Rm.

2. Present ȳ to the separation oracle.

3. If ȳ ∈ C we have solved the convex feasibility problem.

4. Else use the constraint returned by the separation oracle to update P = P∪{y :

aT y ≤ aT ȳ} and goto step 2.

We illustrate the concept of an oracle for the maxcut problem. The maxcut polytope

CHULL(G) does not admit a polynomial time separation oracle, but this is true for

polytopes obtained from some of its faces. One such family of faces are the odd

cycle inequalities; these are the linear constraints in (6). These inequalities form a

polytope called the metric polytope. Barahona & Mahjoub [17] describe a polynomial

time separation oracle for this polytope, that involves the solution of n shortest path

problems on an auxiliary graph with twice the number of nodes, and four times the

number of edges.

The cutting plane approach to the feasibility problem can be extended to convex

optimization problems by cutting on a violated constraint when the trial point is

infeasible, and cutting on the objective function when the trial point is feasible but

not optimal.

Interior point cutting plane methods set up a series of convex relaxations of C,

and utilize the analytic and volumetric centers of these convex sets as test points ȳ,

that are computed in polynomial time by using IPMs. The relaxations are refined

at each iteration by the addition of cutting planes returned by the oracle; some cuts

may even conceivably be dropped. We will assume that each call to the oracle takes

unit time.

We discuss the analytic center cutting plane method in Section 3.1, and the vol-

umetric center method in Section 3.2.

3.1 Analytic center cutting plane methods

A good overview on ACCPM appears in the survey paper by Goffin & Vial [51],

and the book by Ye [163]. The complexity analysis first appeared in Goffin et al.

[50]. The algorithm was extended to handle multiple cuts in Goffin & Vial [52],

15

and nonlinear cuts in Mokhtarian & Goffin [103], Luo & Sun [93], Sun et al. [145],

Toh et al. [152], Oskoorouchi & Goffin [116, 117]. The method has been applied to

a variety of practical problems including stochastic programming (Bahn et al. [14]),

multicommodity network flow problems (Goffin et al. [49]). A version of the ACCPM

software [53] is publicly available. Finally, ACCPM has also appeared recently within

a branch-and-price algorithm in Elhedhli & Goffin [41].

Our exposition in this section closely follows Goffin & Vial [51] and Goffin et al.

[50]. We confine our discussion to the convex feasibility problem discussed earlier.

For the ease of exposition, we will assume the method approximates C via a series

of increasingly refined polytopes FD = {y : AT y ≤ c}. Here A is an m × n matrix,

c ∈ Rn, and y ∈ Rm. We will assume that A has full row rank, and FD is bounded

with a nonempty interior. The vector of slack variables s = c−AT y ∈ Rn, ∀y ∈ FD.

The analytic center of FD is the unique solution to the following minimization

problem.

min φD(s) = −
n
∑

i=1

log si

s.t. AT y + s = c,

s > 0.

If we introduce the notion that F (y) = φD(c − AT y), then the analytic center y∗ of

FD is the minimizer of F (y).

Assuming that C ⊆ {y : 0 ≤ y ≤ e}, the complete algorithm is the following:

Analytic center cutting plane method

Input: Let F0
D = {y : 0 ≤ y ≤ e}, and F0(y) = −

m
∑

i=1

log(yi(1 − yi)). Set y0 = e
2
.

1. Compute yk an approximate minimizer of Fk(y).

2. Present yk to the oracle.

If yk ∈ C then stop,

else the oracle returns the separating hyperplane with normal ak passing through

yk. Update

Fk+1
D = Fk

D ∩ {y : (ak)T y ≤ (ak)T yk},
Fk+1(y) = Fk(y) − log((ak)T (yk − y)).

Set k = k + 1 and goto step 1.

The formal proof of convergence of the algorithm is carried out in three steps. We

will assume that the algorithm works with exact analytic centers.

16

1. We first show that a new analytic center can be found quickly after the addition

of cuts. This is done in an iterative fashion using damped Newton steps, that are

the inner iterations in the algorithm. Goffin & Vial ([51]) show that an analytic

center can be found in O(1) iterations when one central cut is added in each

iteration. In [52], they also show that it is possible to add p cuts simultaneously,

and recover a new analytic center in O(p log(p)) Newton iterations.

2. One then proceeds to establish bounds on the logarithmic barrier function F (y).

Let ȳk be the exact analytic center of the polytope Fk
D, i.e., the minimizer of

Fk(y) = −
2m+k
∑

i=1

log(ck − (Ak)T ȳk)i.

We now establish upper, and lower bounds on Fk(ȳ
k). If we are not done in the

kth iteration, the polytope Fk
D still contains a ball of radius ǫ. If ȳ is the center

of this ball, then we have s̄ = c −AT ȳ ≥ ǫe, giving

Fk(ȳ
k) ≤ Fk(ȳ)

≤ (2m + k) log(1
ǫ
).

(7)

This is an upper bound on Fk(ȳ
k). We can also obtain a lower bound on Fk(ȳ

k)

in the following manner. We only outline the main steps, more details can be

found in Goffin et al. [50]. Let Hi denote the Hessian of F (y) evaluated at ȳi.

We first obtain the bound

Fk(ȳ
k) ≥ −k

2
log

(

1
k

k
∑

i=1

(aT
i H−1

i−1ai)

)

+ 2m log
(

1
2

)

(8)

by exploiting the following self-concordance property of Fj(y)

Fj(y) ≥ Fj(ȳ
j) +

√

(y − ȳj)T Hj(y − ȳj) − log
(

1 +
√

(y − ȳj)T Hj(y − ȳj)
)

,

and applying this property recursively on Fk(y). The bound is simplified in turn

by bounding the Hessian Hi from below by a certain matrix, which is simpler

to analyze. This yields the following upper bound on
k
∑

i=1

aT
i H−1

i−1ai

k
∑

i=1

aT
i H−1

i−1ai ≤ 2m2 log
(

1 + k
m2

)

,

that is employed in the complexity analysis. Substituting this relation in (8)

and simplifying the resulting formulas we have

Fk(ȳ
k) ≥ −k log

(√
2
)

+ k log
(

k

m2

log(1+ k

m2)

)

− 2m log
(

1
2

)

. (9)

17

3. A comparison of the two bounds (7) and (9) on Fk(ȳ
k) yields the following upper

bound on the number of outer iterations

k log
(

k

m2

log(1+ k

m2)

)

≤ (2m + k) log
(

1
ǫ

)

+ k log
(√

2
)

+ 2m log
(

1
2

)

,

that provides the proof of global convergence of the algorithm. It is clear from

this inequality that the algorithm terminates in a finite number of iterations,

since the ratio
(

k

m2

log(1+ k

m2
)

)

tends to infinity as k approaches infinity, i.e., the left

hand side grows superlinearly in k. Neglecting the logarithmic terms, an upper

bound on the number of outer iterations is given by O∗(m2

ǫ2
) (the notation O∗

means that logarithmic terms are ignored).

The analysis presented above can be extended to approximate analytic centers (see

Goffin et al. [50]) to yield a fully polynomial time algorithm for the convex feasibility

problem. The ACCPM algorithm is not polynomial, since the complexity is polyno-

mial in 1
ǫ

not log(1
ǫ
). There is a variant of ACCPM due to Atkinson & Vaidya [11]

(also see Mitchell [96] for an easier exposition) which is polynomial with a complexity

bound of O(mL2) calls to the oracle, but the algorithm requires dropping constraints

from time to time, and also weakening the cuts returned by the oracle making them

shallow. In the next section, we will discuss the volumetric center method which is

a polynomial interior point cutting plane method, with a better complexity bound

than ACCPM for the convex feasibility problem.

3.2 Volumetric center method

The volumetric center method is originally due to Vaidya [154], with enhancements

and subsequent improvements in Anstreicher [7, 8, 9] and Mitchell & Ramaswamy

[100].

The complexity of the volumetric center algorithm is O(mL) calls to the oracle,

and either O(mL) or O(m1.5L) approximate Newton steps depending on whether the

cuts are shallow or central. The complexity of O(mL) calls to the separation oracle

is optimal - see Nemirovskii & Yudin [110].

As in Section 3, we approximate the convex set C by the polytope FD(y) = {y ∈
Rm : AT y ≤ c} ⊇ C, where A is an m × n matrix, and c is an n dimensional vector.

Let y be a strictly feasible point in FD, and let s = c − AT y > 0. The volumetric

barrier function for FD at the point y is defined as

V (y) = 1
2
log(det(AS−2AT)).

18

The volumetric center ŷ of FD(y) is the point that minimizes V (y). The volumetric

center can also be defined as the point y chosen to maximize the volume of the

inscribed Dikin ellipsoid {z ∈ Rm : (z − y)T (AS−2AT)(z − y) ≤ 1} centered at y.

The volumetric center is closely related to the analytic center of the polytope

discussed in Section 3.1. It is closer to the geometrical center of the polytope, than

the analytic center.

We also define variational quantities (see Atkinson & Vaidya [11]) for the con-

straints AT y ≤ c as follows:

σj =
aT

j
(AS−2AT)−1aj

s2
j

, j = 1, . . . , n.

These quantities give an indication of the relative importance of the inequality aT
j y ≤

cj. The larger the value of σj, the more important the inequality. A nice interpretation

of these quantities appears in Mitchell [96]. The variational quantities are used in the

algorithm to drop constraints that are not important.

We present the complete algorithm below.

Volumetric center IPM

Input: Given F 0
D(y) = {y ∈ Rm : 0 ≤ y ≤ e} with C ⊆ F 0

D(y) and n = 2m be the

total number of constraints. Set y0 = e
2
, and let 0 < ǫ < 1 be the desired tolerance.

1. If V (yk) is sufficiently large then stop with the conclusion that C is empty.

Else goto step 2.

2. Compute σi for each constraint.

If σī = min
i=2m+1,...,n

σi > ǫ goto step 4,

else goto step 3.

3. Call the oracle at the current point yk.

If yk ∈ C then stop,

else the oracle returns a separating hyperplane with normal ak passing through

yk.

Update F k+1
D = F k

D ∩ {y : (ak)T y ≤ (ak)T yk}, n = n + 1, and goto step 5.

4. Drop the īth constraint from the current feasible set, i.e., F k+1
D = F k

D\{y :

aT
ī y ≤ cī}, update n = n − 1, and goto step 5.

5. Take a series of damped Newton steps to find a new approximate volumetric

center. Set k = k + 1 and goto step 1.

19

We note that the box constraints 0 ≤ y ≤ e defining the initial polyhedral approx-

imation are never dropped, and hence the polyhedral approximations have at least

2m constraints. In every iteration we either add or drop a constraint. It follows that

in the kth iteration, the algorithm must have previously visited Step 4 where we add

a constraint at least k
2

times, and Step 5 where we drop a constraint on no more than
k
2

occasions. Else, the number of constraints would fall below 2m. The formal proof

of convergence of the algorithm proceeds in the following way:

1. First, we show that the number of Newton iterations in one call to Step 6

of the algorithm to find an approximate volumetric center is bounded. These

are the inner iterations in the algorithm. The condition for a point to be an

approximate volumetric center can be expressed as a condition on the norm

of the gradient of the volumetric barrier function in the norm given by an

approximation to the Hessian of the volumetric barrier function. Formally, a

point y is an approximate volumetric center if

β||g(y)||P (y)−1 ≤ γ,

for some appropriate γ ≤ 1
6
, where

β = min
{

(2
√

σī − σī)
− 1

2 ,
√

1+
√

m

2

}

,

g(y), and P (y) are the gradient and an approximation to the Hessian of the

volumetric barrier function V (y) at the point y, respectively. In Step 6 one

take a series of damped Newton steps of the form ȳ = y + αd, where P (y)d =

−g(y). Anstreicher [8] shows that when a central cut is added in Step 4, then

an approximate volumetric center satisfying (1) could be recovered in O(
√

m)

Newton steps. In this case, the direction first proposed in Mitchell & Todd [101]

is used to move away from the added cut, and the damped Newton iterations

described above are used to recover an analytic center. On the other hand, when

a cut is dropped in Step 5, Vaidya [154] showed that an approximate volumetric

center could be obtained in just one Newton iteration. In the original volumetric

barrier [154], Vaidya weakened the cuts returned by the oracle (shallow cuts),

and showed that a new approximate volumetric center could be obtained in

O(1) Newton steps (these are the number of Newton steps taken to recover an

approximate analytic center in ACCPM with central cuts).

2. The global convergence of the algorithm is established by showing that eventu-

ally the volumetric barrier function becomes too large for the feasible region to

20

contain a ball of radius ǫ. This establishes an upper bound on the number of

iterations required. For ease of exposition we shall assume that we are dealing

with the exact volumetric center of the polyhedral approximation in every iter-

ation. In reality this is not possible, however the analysis can be extended to

include approximate volumetric centers. For example, Anstreicher [7, 8] shows

that if the current polyhedral approximation FD of C has n constraints, then if

the value of the barrier functional at the volumetric center y of FD is greater

than Vmax = mL+m log n, then the volume of C is smaller than that of an m di-

mensional sphere of radius ǫ. He then establishes that the increase in the barrier

function, when a constraint is added, is at least ∆V +, and also the decrease is

no more than ∆V −, for constants ∆V + and ∆V − satisfying 0 < ∆V − < ∆V +,

and where ∆V = ∆V + − ∆V − > 0 is O(1). Thus, we can bound the increase

in the value of the volumetric barrier functional in the kth iteration as follows:

V (yk) − V (y0) ≥ (no of constraints added and still in relaxation) × ∆V ++

(no of constraints added and subsequently dropped) × ∆V

≥ ∆V × (total no of constraints added)

≥ k×∆V
2

,

where the last inequality follows from the fact that the algorithm must have

visited the separation oracle in Step 4 previously at least on k
2

occasions. Com-

bining this with the maximum value Vmax, gives the complexity estimate that

the volumetric center cutting plane algorithm either finds a feasible point in C,

or proves that it is empty in O(mL) calls to the oracle, and O(m1.5L) Newton

steps. The actual results in Anstreicher [7] deal with approximate volumetric

centers. The number of Newton steps can be brought down to O(mL) if shallow

cuts are employed as in Vaidya [154].

The overall complexity of the volumetric center method is O(mLT + m4.5L) arith-

metic operations, where T is the complexity of the oracle, for central cuts, and

O(mLT + m4L) for shallow cuts. The ellipsoid method (see Grötschel et al. [55])

on the other hand takes O(m2LT + m4L) arithmetic operations to solve the convex

feasibility problem. Although the original algorithm due to Vaidya [154] had the

best complexity, it was not practical since the constants involved in the complexity

analysis were very large, of the order of 107. The algorithm was substantially refined

in Anstreicher [7, 8] significantly bringing down the maximum number of constraints

required in the polyhedral approximation to 25n in Anstreicher [8]. Also, since the

algorithm employs central cuts the number of Newton steps required in Step 6 is

21

O(
√

m), which is significantly more than the O(1) steps employed in the ACCPM al-

gorithm in Section 3.1; whether this can be achieved for the volumetric center method

is still an open question. Finally, we must mention that the computational aspects of

the volumetric center method have not yet been entirely tested.

4 Complexity and IPMs for SDP

We consider the complexity of SDP in Section 4.1, and a generic interior point method

(IPM) for solving the SDP, together with issues involved in an efficient implemen-

tation is presented in Section 4.2. This algorithm is employed in solving the SDP

relaxations of combinatorial problems as discussed in the subsequent sections. Our

exposition in this section is sketchy, and for details we refer the interested reader to

the excellent surveys by De Klerk [33], Todd [147], Monteiro [105], the habilitation

thesis of Helmberg [57], and the Ph.D. dissertation of Sturm [143].

Consider the semidefinite programming problem

min C • X

s.t. A(X) = b,

X � 0,

(SDP)

with dual
max bT y

s.t. AT y + S = C,

S � 0,

(SDD)

where the variables X,S ∈ Sn the space of real symmetric n × n matrices, b ∈ Rm.

Also C •X =
n
∑

i,j=1

CijXij is the Frobenius inner product of matrices in Sn. The linear

operator A : Sn → Rm, and its adjoint AT : Rm → Sn are:

A(X) =











A1 • X
...

Am • X











and AT y =
m
∑

i=1

yiAi,

where the matrices Ai ∈ Sn, i = 1, . . . ,m, and C ∈ Sn are the given problem

parameters. The constraints X � 0, S � 0 are the only nonlinear (actually convex)

constraints in the problem requiring that these matrices X and S are symmetric

positive semi-definite matrices. We will hereafter assume that the matrices Ai, i =

1, . . . ,m are linearly independent, that implies m ≤
(

n+1
2

)

.

22

If both the primal (SDP) and the dual (SDD) problems have strictly feasible

(Slater) points, then both problems attain their optimal solutions, and the duality

gap X •S = 0 is zero at optimality. Most SDPs arising in combinatorial optimization

satisfy this assumption. For more on strong duality we refer the reader to Ramana

et al. [134], and De Klerk et al. [37] who discuss how to detect all cases that occur

in SDP.

4.1 The complexity of SDP

In this section, we briefly review the complexity of SDP. Most results mentioned here

can be found in the book by Grötschel et al. [55], the Ph.D. thesis of Ramana [132],

the review by Ramana & Pardalos in the IPM handbook edited by Terlaky [146],

Krishnan & Mitchell [81], and Porkoláb & Khachiyan [127].

We will assume that the feasible region of the SDP is contained in a ball of radius

R > 0. The ellipsoid algorithm (see Theorem 3.2.1 in Grötschel et al. [55]) can find

a solution X∗ to this problem such that |C • X∗ − OPT| ≤ ǫ (OPT is the optimal

objective value), in a number of arithmetic operations that is polynomial in m, n,

log R, and log 1
ǫ

in the bit model. In Krishnan & Mitchell [81], for the particular choice

of R = 1
ǫ
, it is shown that the ellipsoid method, together with an oracle that computes

the eigenvector corresponding to the most negative eigenvalue of S during the course

of the algorithm, takes O((m2n3 + m3n2 + m4) log(1
ǫ
)) arithmetic operations. We

can employ the volumetric barrier algorithm, discussed in Section 3, to improve this

complexity. In Krishnan & Mitchell [81] it is shown that such an algorithm, together

with the oracle mentioned above, takes O((mn3 + m2n2 + m4) log(1
ǫ
)) arithmetic

operations. This is also slightly better than the complexity of primal-dual interior

point methods to be discussed in Section 4.2, when there is no structure in the

underlying SDP.

On the other hand, no polynomial bound has been established for the bit lengths

of the intermediate numbers occurring in interior point methods solving an SDP (see

Ramana & Pardalos in [146]). Thus, strictly speaking, these methods for SDP are

not polynomial in the bit model.

We now address the issue of computing an exact optimal solution of an arbitrary

SDP, when the problem data is rational. Rigorously speaking, this is not a mean-

ingful question since the following pathological cases can occur for a feasible rational

semidefinite inequality, that cannot occur in the LP case.

1. It only has irrational solutions.

23

2. All the rational solutions have exponential bitlength.

As a result, the solution may not be representable in polynomial size in the bit length

model. However we can still consider the following semidefinite feasibility problem

(SDFP).

Definition 1 Given rational symmetric matrices A0, . . . , Am determine if the semidef-

inite system
m
∑

i=1

xiAi � A0

is feasible for some real x ∈ Rm.

Ramana [133] established that SDFP cannot be an NP-complete problem, unless NP

= co-NP. In fact, Porkolab & Khachiyan [127] have shown that SDFP can actually

be solved in polynomial time, if either m or n is a fixed constant. The complexity of

SDFP remains one of the unsolved problems in SDP.

4.2 Interior Point Methods for SDP

In this section we consider primal-dual IPMs for SDP. These are in fact extensions of

the generic IPM for LP discussed in Section 1.

The optimality conditions for the SDP problem (compare with (1) for LP in

Section 1) include the following:

A(X) = b, X � 0,

AT y + S = C, S � 0,

XS = 0.

(10)

The first two conditions represent primal and dual feasibility while the third condition

gives the complementary slackness condition. Consider perturbing the complemen-

tary slackness conditions to XS = µI for some µ > 0. Ignoring the inequality

constraints X,S � 0 for the moment this gives the following system:

A(X) = b,

AT y + S = C,

XS = µI.

(11)

We denote the solution to (11) for some fixed µ > 0 by (Xµ, yµ, Sµ). The set

{(Xµ, yµ, Sµ)} forms the central path that is a smooth analytical curve converging

to an optimal solution (X∗, y∗, S∗), as µ → 0.

24

If we solve (11) by Newton’s method, we get the following linearized system

A△ X = 0,

AT △ y + △S = 0,

△XS + X △ S = µI − XS.

(12)

Since X and S are matrices, they do not always commute i.e., XS 6= SX. In fact,

we have m + n2 + n(n+1)
2

equations, but only m + n(n + 1) unknowns in (12), which

constitutes an overdetermined system of linear equations. This is different from the

LP case in Section 1, where X and S are diagonal matrices and hence commute. As

a result, the solution ∆X may not be symmetric, and X + ∆X is not in the cone of

symmetric positive semidefinite matrices Sn
+. To ensure the symmetry of ∆X, Zhang

[164] introduces the symmetrization operator

HP (M) = 1
2
(PMP−1 + (PMP−1)T), (13)

where P is a given nonsingular matrix, and uses this to symmetrize the linearized

complementary slackness conditions, i.e., we replace the last equation in (12) by

HP (∆XS + X∆S + XS) = µI. (14)

A family of directions arises for various choices of P , that vary with regard to their

theoretical properties, and practical efficiency, and it is still unclear which is the best

direction in the primal-dual class. The Nesterov-Todd (NT) [114] direction has the

most appealing theoretical properties, and is shown to arise for a particular choice of

P = (X− 1

2 (X
1

2 SX
1

2)−
1

2 X
1

2 S)
1

2 in Todd et al. [149]. On the other hand, the H..K..M

direction (proposed independently in Helmberg et al. [63], Kojima et al. [79], and

Monteiro [104]) is very efficient in practice (Tütüncü et al. [153]), and also requires

the least number of arithmetic operations per iteration. It arises for P = S
1

2 , and

a nice justification for this choice appears in Zhang [164]. However, since the NT

direction employs a primal-dual scaling in P as opposed to a dual scaling in H..K..M,

it is more efficient in solving difficult SDP problems. The H..K..M direction is also

obtained in Helmberg et al. [63] by solving the Newton system (12) for ∆X, and

then symmetrizing ∆X by replacing it with 1
2
(∆X + ∆XT). Finally, a good survey

of various search directions appears in Todd [148]. As in IPMs for LP in Section 1,

we need to take damped Newton steps. Similarly we introduce a proximity measure

δ(X,S, µ) that measures the proximity of (X, y, S) to (Xµ, yµ, Sµ) on the central path.

We present the generic IPM for SDP. For simplicity, we shall consider the H..K..M

direction using the original interpretation of Helmberg et al. [63].

25

Generic Primal-Dual IPM for SDP

Input: A, b, C, a feasible starting point (X0, y0, S0) also satisfying the interior

point condition, i.e., X0 ≻ 0, S0 ≻ 0, A(X0) = b, and AT y0 + S0 = C. Further, we

may assume without loss of generality that X0S0 = I. Other parameters include a

barrier parameter µ = 1, a proximity threshold τ > 0 such that δ(X0, S0, µ) ≤ τ , and

an accuracy parameter ǫ > 0.

1. Reduce the barrier parameter µ.

2. If δ(X,S, µ) > τ compute (∆X, ∆y, ∆S) from (12) and replacing ∆X by
1
2
(∆X + ∆XT).

3. Choose some α ∈ (0, 1] so that (X + α∆X), (S + α∆S) ≻ 0, and proximity

δ(X,S, µ) is suitably reduced.

4. Set (X, y, S) = (X + α∆X, y + α∆y, S + α∆S).

5. If X • S ≤ ǫ then stop,

else if δ(X, y, µ) ≤ τ goto step 1,

else goto step 2.

One can solve an SDP with rational data to within a tolerance ǫ in O(
√

n log(1
ǫ
)) fea-

sible iterations (see Todd [147] for more details). This is the best iteration complexity

bound for SDP. Interestingly, this is the same bound as in the LP case.

We now examine the work involved in each iteration. The main computational

task in each iteration is in solving the following normal system of linear equations.

A(XAT (∆y)S−1) = b (15)

This system results from eliminating ∆S, and ∆X from (12). Let M : Rm → Rm be

the linear operator given by My = A(XAT (y)S−1). The ith row of M∆y is given by

Ai • XAT (∆y)S−1 =
m
∑

j=1

∆yjTrace(XAiS
−1Aj)

Each entry of the matrix M thus has the form Mij = Trace(XAiS
−1Aj). This matrix

is symmetric and positive definite, if we assume matrices Ai, i = 1, . . . ,m are linearly

independent in Sn.

Solving for ∆y requires m3

3
arithmetic operations, when the Cholesky decomposi-

tion is used. Moreover, M has be to recomputed in each iteration. An efficient way

to build one row of M is the following

26

1. Compute XAiS
−1 once in O(n3) time;

2. Determine the m single elements via XAiS
−1 • Aj in O(mn2) arithmetic oper-

ations.

In total the construction of M requires O(mn3 + m2n2) arithmetic operations, and

this is the most expensive operation in each iteration. On the whole, an interior point

method requires O(m(n3 + mn2 + m2)
√

n log(1
ǫ
)) arithmetic operations. For most of

the combinatorial problems such as maxcut, the constraint matrices Ai have a rank

one structure, and this reduces the computation of M to O(mn2 + m2n) operations.

Excellent software based on primal-dual IPMs for SDP include CSDP by Borchers

[22], SeDuMi by Sturm [144], and SDPT3 by Tütüncü et al. [153]. An independent

benchmarking of various SDP software appears in Mittleman [102].

In many applications the constraint matrices Ai have a special structure. The

dual slack matrix S inherits this sparsity structure, while the primal matrix X is

usually dense regardless of the sparsity. Benson et al. [19] proposed a dual scaling

algorithm that exploits the sparsity in the dual slack matrix. Also, Fukuda et al. [44]

and Nakata et al. [109] employ ideas from the completion of positive semidefinite

matrices (Grone et al. [54], Laurent [87]) to deal with dense X in a primal-dual IPM

for SDP. Burer [23] on the other hand utilizes these ideas to develop a primal-dual

IPM entirely within the space of partial positive semidefinite matrices.

However, in most approaches, the matrix M is dense, and the necessity to store

and factorize this dense matrix M limits the applicability of IPMs to problems with

around 3000 constraints on a well equipped work station.

One way to overcome the problem of having to store the matrix M via the use of

an iterative scheme, which only accesses this matrix through matrix vector multipli-

cations, is discussed in Toh & Kojima [151]. This approach is not entirely straight-

forward since the Schur matrix M becomes increasingly ill-conditioned as the iterates

approach the boundary. Hence, there is a need for good pre-conditioners for the

iterative method to converge quickly. Recently, Toh [150] has reported excellent com-

putational results with a choice of a good preconditioner in solving the normal system

of linear equations.

5 First order techniques for SDP

Interior point methods discussed in Section 4.2 are fairly limited in the size of prob-

lems they can handle. We discuss various first order techniques with a view of solving

27

large scale SDPs in this section. As opposed to primal-dual interior point methods,

these methods are mostly dual-only, and in some cases primal methods. These meth-

ods exploit the structure prevalent in combinatorial optimization problems; they are

applicable in solving only certain classes of SDPs. Unlike IPMs there is no proof of

polynomial complexity, and moreover these methods are not recommended for those

problems, where a high accuracy is desired. Nevertheless excellent computational re-

sults have been reported for problems that are inaccessible to IPMs due to demand for

computer time and storage requirements. A nice overview of such methods appears

in the recent survey by Monteiro [105]. In this section, we will focus on the first order

techniques which are very efficient in practice.

The first method is the spectral bundle method due to Helmberg & Rendl [61].

The method is suitable for large m, and recent computational results are reported in

Helmberg [59]. The method is first order, but a second order variant which converges

globally and which enjoys asymptotically a quadratic rate of convergence was recently

developed by Oustry [118].

The spectral bundle method works with the dual problem (SDD). Under an ad-

ditional assumption that Trace(X) = β, for some constant β ≥ 0, for all X in the

primal feasible set, the method rewrites (SDD) as the following eigenvalue optimiza-

tion problem.

max βλmin(C −AT y) + bT y, (16)

where λmin(S) denotes the smallest eigenvalue of S. Problem (16) is a concave non-

smooth optimization problem, that is conveniently tackled by bundle methods for

non-differentiable optimization. In the spectral bundle scheme the maximum eigen-

value is approximated by means of vectors in the subspace spanned by the bundle

P which contains the important subgradient information. For simplicity we mention

(see Krishnan & Mitchell [82] for a discussion) that this can be interpreted as solving

the following problem in lieu of (16)

max βλmin(P
T (C −AT y)P) + bT y, (17)

whose dual is the following SDP

min (P T CP) • W

s.t. (P T AiP) • W = bi, i = 1, . . . ,m

I • W = β

W � 0.

(18)

28

In the actual bundle method, instead of (17), we solve an SDP with a quadratic

objective term; the quadratic term arises from the regularization term employed in the

bundle method. For more details we refer the reader to Helmberg et al. [57, 61, 60].

In (18), we are approximately solving (SDP), by considering only a subset of the

feasible X matrices. By keeping the number of columns r in P small, the resulting

SDP can be solved quickly. The dimension of the subspace P is roughly bounded

by the square root of number of constraints. This follows from a bound by Pataki

[122] on the rank of extreme matrices in SDP. The optimum solution of (17) typically

produces an indefinite dual slack matrix S = (C − AT y). The negative eigenvalues

and corresponding eigenvectors of S are used to update the subspace, P and the

process is iterated. A recent primal active set approach for SDP which also deals

with (18) has been recently developed by Krishnan et al. [83].

Another variation of the low rank factorization idea mentioned above has been

pursued by Burer & Monteiro [24]. They consider factorizations X = RRT , where

R ∈ Rn×r, and instead of (SDP) they solve the following formulation for R

min C • (RRT)

s.t. A(RRT) = b.

This is a non-convex optimization problem that is solved using a modified version of

the augmented Lagrangian method. The authors claim via extensive computational

experiments that the method converges to the exact optimum value of (SDP), while

a recent proof of convergence for a variant of this approach appears in Burer &

Monteiro [25]. As a particular case of this approach, Burer et al. have employed

rank two relaxations of maximum cut [28], and maximum stable set [29] problems

with considerable computational success. The rank two relaxation is in fact an exact

formulation of the maximum stable set problem.

We now turn to the method due to Burer et al. [26]. This method complements

the bundle approach discussed previously; it recasts the dual SDP as a non-convex

but smooth unconstrained problem. The method operates on the following pair of

SDPs.

max C • X

s.t. diag(X) = d,

A(X) = b,

X � 0,

(19)

29

with dual

min dT z + bT y

AT y + Diag(z) − S = C,

S � 0.

(20)

Burer et al. consider only strictly feasible solutions of (20), i.e., S = (AT y+Diag(z)−
C) ≻ 0. Consider now a Cholesky factorization of

S = (Diag(v) + L0)(Diag(v) + L0)
T , (21)

where v ∈ Rn
++, and L0 is a strictly lower triangular matrix. In (21), there are n(n+1)

2

equations, and m + n + n(n+1)
2

variables. So one can use the equations to write n(n+1)
2

variables, namely z and L0, in terms of the other variables v and y. Thus one can

transform (20) into the following equivalent nonlinear programming problem

inf dT z(v, y) + bT y

s.t. v > 0,
(22)

where z(v, y) indicates that z has been written in terms of v and y using (21). We

note that the nonlinearity in (20) has been shifted from the constraints to the ob-

jective function, i.e., in the term z(v, y) in (22). The latter problem does not attain

its optimal solution, however we can use its intermediate solutions to approach the

solution of (20) for a given ǫ > 0. Moreover, the function z(v, y) is a smooth analytic

function. The authors then use a log-barrier term introducing the v > 0 constraint

into the objective function, and suggest a potential reduction algorithm to solve (22);

thus their approach amounts to reducing SDP to a non-convex, but smooth uncon-

strained problem. The main computational task is the computation of the gradient,

and Burer et al. [27] develop formulas that exploit the sparsity of the problem data.

Although the objective function is non-convex, the authors prove global convergence

of their method, and have obtained excellent computational results on large scale

problems.

Other approaches include Benson & Vanderbei [18], a dual Lagrangian approach

due to Fukuda et al. [45], and PENNON by Kocvara & Stingl [78] that can also

handle nonlinear semidefinite programs. A variant of the bundle method has also

been applied to the Quadratic Assignment Problem (QAP) by Rendl and Sotirov

[135]; their bounds are the strongest currently available for the QAP and this is one

of the largest SDPs solved to date.

30

6 Branch and cut SDP based approaches

We discuss an SDP based branch and cut approach in this section that is designed

to solving combinatorial optimization problems to optimality via a series of SDP

relaxations of the underlying problem. Our particular emphasis is on the maxcut

problem.

A branch and cut approach combines the advantages of cutting plane, and branch

and bound methods. In a pure branch and bound approach the relaxation is improved

by dividing the problem into two subproblems, where one of the variables is restricted

to taking certain values. The subproblems form a tree known as the branch and bound

tree, rooted at the initial relaxation.

In a branch and cut approach cutting planes are added to the subproblems in the

branch and bound tree, improving these relaxations until it appears that no progress

can be made. Once this is the case, we resort to branching again. We do not discuss

branch and cut LP approaches in this survey, but rather refer the reader to the survey

by Mitchell et al. [98].

Consider now the maxcut problem. As discussed in Section 1, for S ⊆ V with cut

δ(S), the maxcut problem (MC) can be written as

max
S⊂V

∑

{i,j}∈δ(S)

wij. (MC)

Without loss of generality, we can assume that our graph is complete. In order to

model an arbitrary graph in this manner, define wij = 0, {i, j} /∈ E. Finally, let

A = (wij) be the weighted adjacency matrix of the graph.

We consider an SDP relaxation of the maxcut problem in this section. The maxcut

problem can be formulated as the following integer program (23) in the x variables,

where xi = 1 if vertex i ∈ S, and −1 if i ∈ V \S

max
x∈{−1,1}n

n
∑

i,j=1

wij

1 − xixj

4
. (23)

A factor of 1
2

accounts the fact that each edge is considered twice. Moreover, the

expression (1−xixj)

2
is 0 if xi = xj, i.e., if i and j are in the same set, and 1 if xi = −xj.

Thus (1−xixj)

2
yields the incidence vector of a cut associated with a cut vector x,

evaluating to 1 if and only if edge {i, j} is in the cut. Exploiting the fact that x2
i = 1,

we have

1
4

n
∑

i,j=1

wij(1 − xixj) = 1
4

n
∑

i=1

(
n
∑

j=1

wijx
2
i −

n
∑

j=1

wijxixj)

= 1
4
xT (Diag(Ae) − A)x.

(24)

31

The matrix L = Diag(Ae)−A is called the Laplacian matrix of the graph G. Letting

C = 1
4
L, we find that the maxcut problem can be interpreted as a special case of the

following more general {+1,−1} integer programming problem

max
x∈{−1,1}n

xT Cx. (25)

We are now ready to derive a semidefinite programming relaxation for the maxcut

problem. First note that xT Cx = Trace(CxxT). Now consider X = xxT , i.e., Xij =

xixj. Since x ∈ {−1, 1}n, the matrix X is positive semidefinite, and its diagonal

entries are equal to one. Thus (25) is equivalent to the following problem

max C • X

s.t. diag(X) = e,

X � 0,

rank(X) = 1.

(26)

The rank restriction is a non-convex constraint. To get a convex problem one drops the

rank one restriction, and arrives at the following semidefinite programming relaxation

of the maxcut problem

max C • X

s.t. diag(X) = e,

X � 0,

(27)

and its dual

min eT y

s.t. Diag(y) − S = C,

S � 0.

(28)

Lemarechal & Oustry [90] and Poljak et al. [125] derive the SDP relaxation (27) by

taking the dual of the Lagrangian dual of (23), which incidentally is (28). We will

refer to the feasible region of (27) as the elliptope. A point that must be emphasized

is that the elliptope is no longer a polytope. Thus (27) is actually a non-polyhedral

relaxation of the maxcut problem.

These semidefinite programs satisfy strong duality, since X = I is strictly feasible

in the primal problem, and we can generate a strictly feasible dual solution by assign-

ing y an arbitrary positive value. In fact, setting yi = 1+
n
∑

j=1

|Cij| and S = Diag(y)−C

should suffice.

We can improve the relaxation (27) using the following linear inequalities.

32

1. The odd cycle inequalities:

X(C\F) − X(F) ≤ |C| − 2

for each cycle C,F ⊂ C, |F| odd
(29)

These include among others the triangle inequalities. They provide a complete

description of the cut polytope for graphs not contractible to K5 (Barahona

[16] and Seymour [140]). Although there are an exponential number of linear

constraints in (29), Barahona & Mahjoub [17] (also Grötschel et al. [55]) de-

scribe a polynomial time separation oracle for these inequalities, that involves

solving n shortest path problems on an auxiliary graph with twice the number

of nodes, and four times the number of edges. Thus it is possible to find the

most violated odd cycle inequality in polynomial time.

2. The hypermetric inequalities:

These are inequalities of the form (30)

aaT • X ≥ 1, where a ∈ Zn,
n
∑

i=1

ai odd

and min{(aT x)2 : x ∈ {−1, 1}n} = 1.

(30)

For instance, the triangle inequality Xij + Xik + Xjk ≥ −1 can be written as a

hypermetric inequality by letting a to be the incidence vector of the triangle (i, j, k).

On the other hand the other inequality Xij − Xik − Xjk ≥ −1 can be written in a

similar way, except that ak = −1. Although there are a countably infinite number

of them, these inequalities also form a polytope known as the hypermetric polytope

(Deza & Laurent [40]). The problem of checking violated hypermetric inequalities is

NP-hard (Avis [12] and Avis & Grishukhin [13]). However, Helmberg & Rendl [62]

describe simple heuristics to detect violated hypermetric inequalities.

We sketch a conceptual SDP cutting plane approach for the maxcut problem in

this section.

An SDP cutting plane approach for maxcut

1. Initialize. Start with (27) as the initial SDP relaxation.

2. Solve the current SDP relaxation. Use a primal-dual IPM as discussed in

Section 4.2. This gives an upper bound on the optimal value of the maxcut

problem.

33

3. Separation. Check for violated odd cycle inequalities. Sort the resulting vi-

olated inequalities, and add a subset of the most violated constraints to the

relaxation.

If no violated odd cycle inequalities are found goto step 5.

4. Primal heuristic. Use the Goemans-Williamson [47] randomized rounding

procedure (discussed in Section 7) to find a good incidence cut vector. This is

a lower bound on the optimal value.

5. Check for termination. If the difference between the upper bound and the

value of the best cut is small, then stop.

If no odd cycle inequalities were found in step 3 then goto step 4.

Else goto step 2.

6. Branching. Resort to branch and bound as discussed in Section 6.1.

The choice of a good SDP branch and cut approach hinges on the following:

1. Choice of a good initial relaxation: The choice of a good initial relaxation

is important, and provides a tight upper bound on the maxcut value. The SDP

relaxation (27) is an excellent choice; it is provably tight in most cases. Better

initial relaxations (see Anjos & Wolkowicz [5, 6], Lasserre [85], and Laurent

[88]) do exist, but they are more expensive to solve. In contrast the polyhedral

cutting plane approaches rely on poor LP relaxations, the ratio of whose bounds

to the maxcut optimal value can be as high as 2 (see Poljak & Tuza [126]).

2. Generating good lower bounds: The Goemans-Williamson rounding proce-

dure in Step 4 is an algorithm for generating incidence cut vectors, that provide

good lower bounds. We will see in Section 7 that this procedure is instrumental

in developing a 0.878 approximation algorithm for the maxcut problem.

3. Choice of good cutting planes: It is important to use good cutting planes

that are facets of the maxcut polytope, and use heuristics for finding such con-

straints quickly. In the above cutting plane approach for instance we might first

check for violated triangle inequalities by complete enumeration, and use the

Barahona-Mahjoub separation oracle when we run out of triangle inequalities

(Mitchell [95]).

4. Choice of the branching rule: Typically we may have to resort to branch

and bound in Step 6. It is important to choose a good branching rule to keep

34

the size of the branch and bound tree small. We present a short discussion on

branch and bound in an SDP branch and cut framework in Section 6.1.

5. Restarting after branching or the addition of cutting planes: One of the

major shortcomings of an SDP branch and cut approach, where a primal-dual

IPM is employed in solving the SDP relaxations is the issue of restarting the

SDP relaxations after the addition of cutting planes. Although some warm start

strategies do exist for the maxcut problem (Mitchell [97]), they are prohibitively

expensive. We will discuss some of these strategies in Section 6.2. There do

exist simplex-like analogues for SDP (Pataki [123, 124] and Krishnan et al.

[83]), and dual simplex variants of these schemes could conceivably be used to

re-optimize the SDP relaxations after the addition of cutting planes.

6.1 Branch and bound in the SDP context

We provide a short overview on branch and bound within the SDP context in this

section. Some excellent references for branch and bound within the SDP context of

the maxcut problem are Helmberg & Rendl [62], and Mitchell [97].

Consider X = V T V , with V = (v1, . . . , vn). We want to branch based on the

values of Xij = (vT
i vj). Typically this is the most fractional variable, i.e., the Xij

closest to zero. The branching scheme is based on whether vertices i and j should be

on the same side of the cut or on opposite sides. With this branching rule Xki and Xkj

are also then constrained to be either the same or different, ∀k = {1, . . . , n}\{i, j}.
This means that the problem can be replaced by an equivalent semidefinite program

of dimension one less. Without loss of generality let us assume that we are branching

on whether vertices n − 1 and n are on the same or opposite sides. Let we write the

Laplacian matrix L in (27) as

L =









L̄ p1 p2

pT
1 α β

pT
2 β γ









.

Here L̄ ∈ Sn−2, p1, p2 ∈ Rn−2 and α, β, and γ ∈ R. The SDP relaxation that

corresponds to putting both n − 1 and n on the same side is

max 1
4





L̄ p1 + p2

pT
1 + pT

2 α + 2β + γ



 • X

s.t. diag(X) = e,

X � 0,

(31)

35

with dual

min eT y

s.t. Diag(y) − S = 1
4





L̄ p1 + p2

pT
1 + pT

2 α + 2β + γ



 ,

S � 0.

(32)

Note that X,S ∈ Sn−1, and y ∈ Rn−1, i.e., not only do we have a semidefinite

program of dimension one less, but the number of constraints in (31) has dropped by

one as well. This is because performing the same transformation (as the Laplacian)

on the nth coefficient matrix ene
T
n leaves it as en−1e

T
n−1, which is in fact the (n− 1)th

coefficient matrix.

On the other hand, putting n − 1 and n on opposite sides, we get a similar SDP

relaxation, with the Laplacian matrix now being 1
4





L̄ p1 − p2

pT
1 − pT

2 α − 2β + γ



.

It is desirable that we use the solution of the parent node, in this case the solution

of (27), to speed up the solution of the child (31). As we mentioned previously, this

is a major issue in the SDP, since there is no analogue to the dual simplex method,

unlike the LP case for re-optimization. More details on this can be found in Mitchell

[97].

Another important issue is determining good bounds for each of the subprob-

lems, so that some of these subproblems in the branch and bound tree could be

fathomed, i.e., not explicitly solved. In the LP approach, we can use reduced costs to

estimate these bounds, and hence fix some of the variables without having to solve

both subproblems. In the SDP case things are not so easy, since the constraints

−1 ≤ Xij ≤ 1 are not explicitly present in the SDP relaxation (they are implied

through the diag(X) = e and X � 0 constraints). Thus, the dual variables corre-

sponding to these constraints are not directly available. Helmberg [58] describes a

number of approaches to fix variables in semidefinite relaxations.

6.2 Warm start strategies for the maxcut problem

In cutting plane algorithms it is of fundamental importance that re-optimization

is carried out in reasonable time after the addition of cutting planes. Since the

cutting planes cut off the optimal solution Xprev to the previous relaxation, we need

to generate a new strictly feasible point Xstart for restarting the method.

We first discuss two strategies of restarting the primal problem since this is the

more difficult problem.

36

1. Backtracking along iterates:

This idea is originally due to Mitchell & Borchers [99] for the LP. The idea is to

store all the previous iterates on the central path, during the course of solving

the original SDP relaxation (27), and restart from the last iterate that is strictly

feasible with respect to the new inequalities. Also, this point is hopefully close

to the new central path, and the interior point algorithm will work better if this

is the case.

2. Backtracking towards the analytic center:

This was employed in Helmberg & Rendl [62]. The idea is to backtrack towards

I along a straight line between the last iterate Xprev and I. Thus we choose

Xstart = (λXprev + (1 − λ)I) for some λ ∈ [0, 1). Since the identity matrix I

is the analytic center of the feasible region of (27), it is guaranteed that the

procedure will terminate with a strictly feasible primal iterate.

Restarting the dual which has additional variables corresponding to the number of

cutting planes in the primal is relatively straightforward, since we can get into the

dual SDP cone S � 0, by assigning arbitrarily large values to the first n components

of y (that originally appear in Diag(y)).

7 Approximation algorithms for combinatorial op-

timization

One of the most important applications of SDP is in developing approximation al-

gorithms for various combinatorial optimization problems. The euphoria began with

the Goemans & Williamson approximation algorithm [47] for the maxcut problem,

and the technique has since been applied to a variety of other problems. For some

of these problems such as MAX 3SAT the SDP relaxation (Karloff & Zwick [72])

provides the tightest approximation algorithm possible unless P = NP .

We discuss the GW algorithm in detail below. The algorithm works with the SDP

relaxation (27) for the maxcut problem we introduced in Section 6. We outline the

main steps in the algorithm as follows:

The Goemans-Williamson (GW) approximation algorithm for maxcut

1. Solve the SDP relaxation (27) to get a primal matrix X.

37

2. Compute V = (v1, . . . , vn) such that X = V T V . This can be done either

by computing the Cholesky factorization of X, or by computing its spectral

decomposition X = PΛP T , with V =
√

ΛP T .

3. Randomly partition the unit sphere in Rn into two half spheres H1 and H2 (the

boundary in between can be on either side), and form the bipartition consisting

of V1 = {i : vi ∈ H1} and V2 = {i : vi ∈ H2}. The partitioning is carried out

in practice by generating a random vector r on the unit sphere, and assigning i

to V1 if vT
i r ≥ 0, and V2 otherwise. In practice, one may repeat this procedure

more than once, and pick the best cut obtained.

Hereafter, we refer to Step 3 as the GW rounding procedure. It is important to

note that Step 3 gives a lower bound on the optimal maxcut solution, while the SDP

relaxation in Step 1 gives an upper bound. The entire algorithm can be derandomized

as described in Mahajan & Hariharan [94].

A few notes on the GW rounding procedure: For any factorization of X = V T V

in Step 2, the columns of V yield vectors vi, i = 1, . . . , n. Since we have diag(X) = e,

each vector vi is of unit length, i.e., ||vi|| = 1. Associating a vector vi with node i, we

may interpret vi as the relaxation of xi ∈ {−1, 1} to the n dimensional unit sphere.

Thus we are essentially solving

max
n
∑

i,j=1

Lij

4
vT

i vj

s.t. ||vi|| = 1 ∀i = 1, . . . , n,

vi ∈ Rn.

(33)

This vector formulation provides a way to interpret the solution to the maxcut SDP.

Since vi and vj are unit vectors, vT
i vj is the cosine of the angle between these vectors.

If all the edge weights wij are nonnegative, the off diagonal entries of the Laplacian

matrix are negative. Thus, if the angle between the vectors is large, we should separate

the corresponding vertices, if it is small we put them in the same set (since this would

improve the objective function in the vector formulation). In order to avoid conflicts,

Goemans & Williamson [47] consider the random hyperplane technique mentioned in

Step 3. This step is in accord with our earlier intuition, since vectors with a large

angle between them are more likely to be separated, since the hyperplane can end up

between them.

The hyperplane with normal r in Step 3 of the algorithm divides the unit circle

into two halfspheres, and an edge {i, j} belongs to the cut δ(S) if and only if the

38

vectors vi and vj do not belong to the same half-sphere. The probability that an edge

{i, j} belongs to δ(S) is equal to
arccos(vT

i
vj)

π
, and the expected weight E(w(S)) of the

cut δ(S) is

E(w(S)) =
n
∑

i,j=1

Lij

4

arccos(vT
i vj)

π

=
n
∑

i,j=1

Lij

4

1 − vT
i vj

2

2

π

arccos(vT
i vj)

1 − vT
i vj

≥ 0.878 × (objective value of relaxation (33))

≥ 0.878 × (optimal maxcut value).

The second to last inequality holds if we assume that all the edge weights are non-

negative, and from the observation that

min
−1≤x≤1

2

π

arccos(x)

1 − x
≥ 0.878.

The last inequality from the fact that the objective value of relaxation (33) provides

an upper bound on the maxcut solution. Hence, we have an 0.878 approximation

algorithm for the maxcut problem, when all the edge weights are nonnegative. On

the negative side H̊astad [56] showed that it is NP-hard to approximate the maxcut

problem to within a factor of 0.9412.

For the general case where L � 0, Nesterov [111] showed that the GW rounding

procedure gives an 2
π

approximation algorithm for the maxcut problem.

Interestingly, although, the additional inequalities such as triangle inequalities

(mentioned with regard to the metric polytope) improve the SDP relaxation, they do

not necessarily give better approximation algorithms. On the negative side Karloff

[71] exhibited a set of graphs for which the optimal solution of relaxation (27) satisfies

all the triangle inequalities as well, so after the GW rounding procedure we are still

left with a 0.878 approximation algorithm.

Goemans & Williamson [47] show that the randomized rounding procedure per-

forms well if the ratio of the weight of the edges in the cut, to those in the graph

is more than 85%. If this is not true, then it pays to introduce more randomness in

the rounding procedure. Zwick [165] considers the randomized rounding as applied

to (γI + (1 − γ)X) rather than X, for some appropriate γ ∈ [0, 1].

There have been several extensions of SDP, and the randomized rounding tech-

nique to other combinatorial optimization problems. These include quadratic pro-

gramming (Nesterov [111], Ye [161]), maximum bisection (Frieze & Jerrum [43], Ye

[162]), max k-cut problem (Frieze & Jerrum [43], De Klerk et al. [36], Goemans

39

& Williamson [48]), graph coloring (Karger et al. [70]), vertex cover (Kleinberg &

Goemans [77]), maximum satisfiability problem (Goemans & Williamson [47] and

more recently in De Klerk & Van Maaren [38], De Klerk et al. [39], and Anjos [4])

with extensions to Max 2SAT (Feige & Goemans [42]) and Max 3SAT (Karloff &

Zwick [72]), and finally the maximum directed cut problem (Goemans & Williamson

[47], Feige & Goemans [42]). A nice survey on the techniques employed in designing

approximation algorithms for these problems is Laurent & Rendl [89], while a good

overview of the techniques for satisfiability, graph coloring, and max k-cut appears in

the recent monograph by De Klerk [33].

8 Convex approximations of integer programming

The results in this section are based on recent results by Nesterov [112], Lasserre

[84, 85], Parrilo [121] and De Klerk et al. [35, 21]. A nice survey of these methods

also appears in Laurent & Rendl [89].

8.1 Semidefinite approximations of polynomial programming

Consider the following polynomial programming problem

min g0(x)

s.t. gk(x) ≥ 0, k = 1, . . . ,m,
(34)

where gk(x), k = 0, . . . ,m are polynomials in x = (x1, . . . , xn). This is a general

problem which encompasses {0, 1} integer programming problems, since the condition

xi ∈ {0, 1} can be expressed as the polynomial equation x2
i −xi = 0. The importance

of (34) is that, under some technical assumptions, this problem can be approximated

by a sequence of semidefinite programs. This result, due to Lasserre [84], relies on

the fact that certain nonnegative polynomials can be expressed as sums of squares

(SOS) 1 of other polynomials. Also, see Nesterov [112], Parrilo [121], and Shor [142]

for using SOS representations of polynomials for approximating (34).

We give a brief overview of some of the main ideas underlying this approach. For

ease of exposition we shall confine our attention to the unconstrained problem

g∗ = min g(x) s.t. x ∈ Rn, (35)

1This is not to be confused with specially ordered sets commonly used in integer programming.

40

where without loss of generality we assume g(x) is a polynomial of even degree 2d.

Let
[

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

2
n, . . . , x2d

1 , . . . , x2d
n

]

be a basis for g(x). Let

S2d = {α ∈ Zn
+ :

∑

i αi ≤ 2d},

and let s(2d) = |S2d|. The above basis can then be conveniently represented as

{xα}, α ∈ Ssd. We write g(x) =
∑

α∈S2d
γαxα, with xα = xα1

1 xα2

2 . . . xαn
n , where

γ = {γα} ∈ Rs(2d) is the coefficient vector of g(x) in the basis. Then problem (35)

can also be written as

g∗ = max {λ s.t. g(x) − λ ≥ 0, ∀x ∈ Rn}. (36)

This problem encompasses integer and non-convex optimization problems, and con-

sequently is NP hard. However, lower bounds on g∗ can be obtained by considering

sufficient conditions for the polynomial g(x) − λ ≥ 0 on Rn. One such requirement

is that g(x) − λ be expressible as a sum of squares of polynomials, i.e., have an SOS

representation. Thus,

g∗ ≥ max {λ s.t. g(x) − λ has an SOS representation}. (37)

Problem (37) can be expressed as a semidefinite program. To see this, let z = {xα}
with α ∈ Sd be the basis vector consisting of all monomials of degree ≤ d. Then one

can easily verify that g(x) has an SOS representation if and only if g(x) = zT Xz for

some positive semidefinite matrix X. For γ ∈ S2d, let

Bγ =
∑

α,β∈Sd,α+β=γ

Eα,β,

where Eα,β is the elementary matrix with all zero entries except entries 1 at positions

(α, β) and (β, α). Using this we have:

zT Xz =
∑

α,β∈Sd

Xα,βxα+β,

=
∑

γ∈S2d

xγ
∑

α,β∈Sd,α+β=γ

Xα,β,

=
∑

γ∈S2d

xγ(Bγ • X).

Assuming the constant term g0 in the polynomial g(x) is zero, and comparing coeffi-

cients in g(x) − λ =
∑

γ∈S2d
xγ(Bγ • X) for γ = 0, we have λ = −B0 • X. Hence, one

41

can equivalently write (37) as the following SDP

max −B0 • X

s.t. Bγ • X = gγ, γ ∈ S2d\{0},
X � 0,

(38)

with dual

min
∑

α∈S2d

gαyα

s.t.
∑

α∈S2d

Bαyα � 0.
(39)

The dual (39) has an equivalent interpretation in the theory of moments, and forms

the basis for the original approach of Lasserre [84]. Another advantage of this dual

approach of Lasserre [84], over the primal approach of Parrilo [121], is that it also

yields certificates ensuring that an optimal solution is attained in the series of re-

laxations, and also gives a mechanism for extracting these solutions (see Henrion &

Lasserre [66]).

In general for a polynomial with even degree 2d in n variables, the SDP (38) has
(

n+2d

2d

)

constraints, where X is a matrix in S(n+d

d). The lower bound from (38) is

equal to g∗ if the polynomial g(x) − λ has an SOS representation; this is true for

n = 1, but not in general if n ≥ 2. In such cases, one can estimate g∗ asymptotically

by a sequence of SDPs, if one assumes that an upper bound R is known a priori on

the norm of a global minimizer x of g(x) (see Lasserre [84]), by using a theorem of

Putinar [130] for SOS representations of the positive polynomial g(x)−λ+ǫ on the set

{x : ||x|| ≤ R}. This gives a sequence of SDP approximations, whose objective values

asymptotically converge to g∗. A similar approach has been adopted by Lasserre [84]

for the constrained case (34).

In the {0, 1} case, when the constraints x2
i −xi = 0 are part of the polynomials in

the constraint set, Lasserre [85] shows there is finite convergence in n steps. Laurent

[86] shows that the Lassere approach is actually a strengthened version of the Sherali

& Adams [141] lift and project procedure, and since the latter scheme converges in

at most n steps so does the above approach. Other lift and project methods include

Lovász & Schrijver [92], and Balas et al. [15] in the context of estimating the convex

hull of the feasible set of {0, 1} programming problems, and the successive convex

approximations to non-convex sets introduced in Kojima & Tuncel [80]. We also

refer the reader to Laurent [86], and the recent survey by Laurent & Rendl [89] for a

comparison of these various approaches. Finally, MATLAB code based on the above

approach have been developed by Prajna et al. [129], and Henrion & Lasserre [65].

42

8.2 Copositive formulations of IP and SDP approximations

of copositive programs

As another instance of convex approximations to integer programming, we consider

the problem of finding the stability number of a graph. This problem can be expressed

as a copositive program (see Quist et al. [131] and Bomze et al. [20]), that is a convex

optimization problem. Recently, De Klerk & Pasechnik [35] apply the technique of

approximating the copositive cone through a series of semidefinite approximations

introduced by Parrilo [121], and use this to estimate the stability number of the

graph to any degree of accuracy. We present a brief overview of their approach in

this section.

The stability number of a graph G = (V,E), denoted by α(G), can be expressed

as the solution to the following copositive programming problem (due to Quist et al.

[131], and is based on an earlier representation of α(G) due to Motzkin & Strauss

[106]) that amounts to minimizing a particular quadratic function over the simplex.

min λ

s.t. λI + yA − S = eeT ,

S ∈ Cn,

(40)

with dual

max eeT • X

s.t. I • X = 1,

A • X = 0,

X � 0,

(41)

where λ, y ∈ R, e is the all-ones vector, A is the adjacency matrix of the graph

G = (V,E), and Cn = {X ∈ Sn : dT Xd ≥ 0,∀d ≥ 0} is the set of n × n symmetric

copositive matrices. The problem (40) is not solvable in polynomial time since the

decision problem whether a matrix is copositive or not is NP-hard (Murthy & Kabadi

[108]). In fact, De Klerk and Pasechnik [35] show that the equality constraints in (41)

can be combined together as (A+I)•X = 1. Thus, we can drop the additional variable

y in (40), and rewrite the slack matrix as S = λ(I + A) − eeT .

A sufficient condition for a matrix M to be copositive is M � 0. In fact, setting

S � 0 in (40) gives a constrained version of the following SDP representing the Lovász

43

theta function (see Lovász [91] and Grötschel et al. [55]).

min λ

s.t. λI +
∑

{i,j}∈E

yijEij − S = eeT ,

S � 0,

(42)

where Eij ∈ Sn is the elementary matrix with all zero entries, except entries 1 in

positions (i, j) and (j, i), corresponding to edge {i, j} in the graph. In the search for

stronger sufficient conditions for copositivity, Parrilo [121, 120] proposes approximat-

ing the copositive cone using SOS representations of polynomials. To see this, note

that a matrix M ∈ Cn if and only if the polynomial

gM(x) =
n
∑

i,j=1

Mijx
2
i x

2
j

is nonnegative on Rn. Therefore, a sufficient condition for M to be copositive is that

gM(x) has an SOS representation, or more generally the polynomial gM(x)(
n
∑

i=1

x2
i)

r

has an SOS representation for some integer r ≥ 0. In fact a theorem due to Polya

suggests that M is copositive, then gM(x)(
n
∑

i=1

x2
i)

r has an SOS representation for some

r. An upper bound on r is given by Powers & Reznick [128].

If we define Kr
n to be the set of matrices in Sn for which gM(x)(

n
∑

i=1

x2
i)

r has an

SOS representation, we have the following hierarchy of approximations to Cn.

Sn
+ ⊆ K0

n ⊆ . . .

⊆ Kr
n = Cn.

(43)

For each Kr
n, one can define the parameter

γr(G) = min λ s.t. λI + yA − eeT ∈ Kr
n, (44)

where γr(G) = α(G) for some r. It was remarked in the previous section that the

SOS requirement on a polynomial can be written as a semidefinite program, and so

(44) represents a hierarchy of semidefinite programs, whose objective values eventu-

ally converge to the stability number of the graph. Parrilo [121] gives explicit SDP

representations for Kr
n, r = 0, 1. For instance S ∈ K0

n, if and only if S = P + N , for

P � 0, and N ≥ 0. For the stable set problem, this first lifting gives the Schrijver

formulation (see Schrijver [139]) of the Lovász theta function. In particular using

Powers & Reznick’s [128] estimate of r, De Klerk & Pasechnik show that

α(G) = ⌊γr(G)⌋, if r ≥ α2(G).

44

We refer the reader to De Klerk & Pasechnik [35] for more details.

One obtaines the same result by applying the hierarchy of SDP approximations

due to Lasserre (discussed in Section 8.1) on the original Motzkin & Strauss [106]

formulation for the maximum stable set problem. In fact, De Klerk et al. [34] have

shown that the polynomial progamming approach of Section 8.1 are in fact equiva-

lent for the problem of minimizing a quadratic function over the simplex (standard

quadratic programming problem).

Recently, Bomze & De Klerk [21] developed the first polynomial time approxima-

tion scheme (PTAS) for the standard quadratic programming problem, by applying

a similar technique of LP and SDP approximations to the copositive cone. A good

account also appears in the recent survey by De Klerk [33].

As of now, copositive programming has only been applied to the standard quadratic

programming problem (De Klerk [32]). It is therefore interesting to speculate on other

classes of problems that can be modelled as copositive programs.

9 Conclusions

We have presented an overview of some of the most recent developments in IPMs

for solving various combinatorial optimization problems. IPMs are adapted in a

number of ways to solving the underlying discrete problem; directly via a potential

reduction approach in Section 2, in conjunction with an oracle in a cutting plane

approach in Section 3, or applied to SDP relaxations or other convex reformulations

of these problems as discussed in Sections 6 and 8. SDP is a major tool in continuous

approaches to combinatorial problems, and IPMs of Section 4 can also be used in

conjunction with ingenious randomized rounding schemes to generate solutions for

various combinatorial optimization problems with provable performance guarantees.

This was the topic of Section 7.

We conclude with a summary of some of the important issues, and open problems

in the topics discussed:

1. The interior point cutting plane methods of Section 3, especially ACCPM, and

its variants have been applied to solve a variety of convex optimization problems

with some degree of practical success. It is interesting to speculate whether AC-

CPM is indeed a polynomial time solution procedure for the convex feasibility

problem. The volumetric center IPM on the other hand has the best complexity

among cutting plane methods which is provably optimal, and has rendered the

45

classical ellipsoid algorithm obsolete. Recent work by Anstreicher [8] has con-

siderably improved the constants involved in the analysis of the algorithm, and

it would be interesting to consider practical implementations of this algorithm

in the near future.

2. The primal-dual IPMs described in Section 4.2 are indeed the algorithms of

choice for SDP; however as of now they are fairly limited in the size of problems

they can handle in computational practice. The ability of future IPMs to handle

large SDPs will depend to a great extent on the design of good pre-conditioners

(Toh [150], Toh & Kojima [151]), that are required in an iterative method

to solve the normal system of equations. On the other hand, the first order

approaches discussed in Section 5 exploit the structure in the underlying SDP

problem, and are consequently able to solve larger problems; albeit to a limited

accuracy.

3. On the theoretical side, the complexity of the semidefinite feasibility problem

(SDFP) discussed in Section 4.1 is still an open problem.

4. There have been several applications of SDP to hard discrete optimization prob-

lems as discussed in Section 7 of this survey. However, to the best of our

knowledge, there have been relatively few applications of second order cone pro-

gramming (SOCP) in combinatorial optimization. In this regard we note the

work of Kim & Kojima [76] and Muramatsu & Suzuki [107]. An open question

is whether one could develop good approximation algorithms for combinato-

rial optimization using SOCP relaxations of the underlying problem, since the

SOCP can be solved more quickly than SDP using IPMs.

5. An important issue in the branch and cut approaches discussed in Section 6 is

that of restarting the new relaxation with a strictly interior point after branch-

ing, or the addition of cutting planes. In this regard, it is interesting to consider

dual analogues of the primal active set approaches investigated in Krishnan et

al. [83], which conceivably (like the dual simplex method for LP) could be

employed for re-optimization.

6. One of the major applications of the SDP is its use in developing approximation

algorithms for various combinatorial optimization problems as discussed in Sec-

tion 7. In many cases, such as the MAX 3 SAT problem, the SDP in conjunction

with rounding schemes provides the tightest possible approximation algorithms

46

for these problems unless P = NP. Recently, there has been renewed interest

in SDP approximations to polynomial and copositive programming, which are

provably exact in the limit. We discussed some of these ideas in Section 8.

Although, there are a variety of problems that can be modelled as polynomial

programs, the situation with respect to copositive programming is far less clear.

In this regard it is interesting to speculate on the classes of problems, that can

be written as copositive programs.

10 Acknowledgements

The authors would like to thank an anonymous referee whose comments greatly im-

proved the presentation of the paper.

References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathemat-

ical Programming, 95(2003), pp. 3-51.

[2] F. Alizadeh, J.P.A. Haeberly, and M.L. Overton, Primal-dual interior-

point methods for semidefinite programming: Convergence rates, stability and

numerical results, SIAM Journal on Optimization, 8(1998), pp. 746-768.

[3] E.D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu, Implementation

of interior point methods for large scale linear programming, In Interior Point

Methods for Linear Programming: T. Terlaky (editor), Kluwer Academic Pub-

lishers, The Netherlands, (1996), pp. 189-252.

[4] M.F. Anjos, An improved semidefinite programming relaxation for the satisfi-

ability problem, to appear in Mathematical Programming 2004.

[5] M.F. Anjos and H. Wolkowicz, Geometry of semidefinite max-cut relax-

ations via matrix ranks, Journal of Combinatorial Optimization, 6(2002), pp.

237-270.

[6] M.F. Anjos and H. Wolkowicz, Strengthened semidefinite relaxations via a

second lifting for the maxcut problem, Discrete Applied Mathematics, 119(2002),

pp. 79-106.

47

[7] K.M. Anstreicher, On Vaidya’s volumetric ctting plane method for convex

programming, Mathematics of Operations Research, 22(1997), pp. 63-89.

[8] K.M. Anstreicher, Towards a practical volumetric cutting plane method for

convex programming, SIAM Journal on Optimization, 9(1999), pp. 190-206.

[9] K.M. Anstreicher, The volumetric barrier for semidefinite programming,

Mathematics of Operations Research, 25(2000), pp. 365-380.

[10] S. Arora and C. Lund, Hardness of Approximations, In D. Hochbaum (edi-

tor), Approximation Algorithms for NP-hard Problems, PWS Publishing, 1996,

(appeared as Chapter 10 in the volume).

[11] D.S. Atkinson and P.M. Vaidya, A cutting plane algorithm for convex pro-

gramming that uses analytic centers, Mathematical Programming, 69(1995), pp.

1-43.

[12] D. Avis, On the complexity of testing hypermetric, negative type, k-gonal and

gap inequalities, to appear in Lecture Notes in Computer Science, 2004.

[13] D. Avis and V.P. Grishukhin, A bound on the k-gonality of facets of the

hypermetric cone and related complexity problems, Computational Geometry:

Theory & Applications, 2(1993), pp. 241-254.

[14] O. Bahn, O. Du Merle, J.L. Goffin, and J.P. Vial, Solving nonlin-

ear multicommodity network flow problems by the analytic center cutting plane

method, Mathematical Programming, 76(1997), pp. 45-73.

[15] E. Balas, S. Ceria, and G. Cornuejols, A lift and project cutting plane

algorithm for mixed 0-1 programs, Mathematical Programming, 58(1993), pp.

295-324.

[16] F. Barahona, The maxcut problem in graphs not contractible to K5, Operations

Research Letters, 2(1983), pp. 107-111.

[17] F. Barahona and A.R. Mahjoub, On the cut polytope, Mathematical Pro-

gramming, 44(1986), pp. 157-173.

[18] H.Y. Benson and R.J. Vanderbei, Solving problems with semidefinite and re-

lated constraints using interior-point methods for nonlinear programming, Math-

ematical Programming, 95(2003), pp. 279-302.

48

[19] S.J. Benson, Y. Ye, and X. Zhang, Solving large-scale semidefinite programs

for combinatorial optimization, SIAM Journal on Optimization, 10 (2000), pp.

443-461.

[20] I. Bomze, M. Dur, E. De Klerk, C. Roos, A.J. Quist, and T. Ter-

laky, On copositive programming and standard quadratic optimization problems,

Journal of Global Optimization, 18(2000), pp. 301-320.

[21] I. Bomze and E. De Klerk, Solving standard quadratic optimization problems

via linear, semidefinite and copositive programming, Journal of Global Optimiza-

tion, 24(2002), pp. 163-185.

[22] B. Borchers, CSDP: A C library for semidefinite programming, Optimization

Methods and Software, 11(1999), pp. 613-623.

[23] S. Burer, Semidefinite programming in the space of partial positive semidefinite

matrices, SIAM Journal on Optimization, 14(2003), pp. 139-172.

[24] S. Burer and R.D.C. Monteiro, A nonlinear programming algorithm for

solving semidefinite programs via low-rank factorization, Mathematical Program-

ming, 95(2003), pp. 329-357.

[25] S. Burer and R.D.C. Monteiro, Local minima and convergence in low-

rank semidefinite programming, Technical Report, Department of Management

Sciences, University of Iowa, September 2003.

[26] S. Burer, R.D.C. Monteiro, and Y. Zhang, Solving a class of semidefinite

programs via nonlinear programming, Mathematical Programming, 93(2002), pp.

97-102.

[27] S. Burer, R.D.C. Monteiro, and Y. Zhang, A computational study of a

gradient based log-barrier algorithm for a class of large-scale SDPs, Mathematical

Programming, 95(2003), pp. 359-379.

[28] S. Burer, R.D.C. Monteiro, and Y. Zhang, Rank-two relaxation heuristics

for max-cut and other binary quadratic programs, SIAM Journal on Optimiza-

tion, 12(2002), pp. 503-521.

[29] S. Burer, R.D.C. Monteiro, and Y. Zhang, Maximum stable set formula-

tions and heuristics based on continuous optimization, Mathematical Program-

ming, 94(2002), pp. 137-166.

49

[30] V. Chvátal, Linear Programming, W.H. Freeman and Company, 1983.

[31] A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust-Region Methods, MPS-

SIAM Series on Optimization, 2000.

[32] E. De Klerk, personal communication, 2003.

[33] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms

and Selected Applications, Applied Optimization Series, Vol. 65, Kluwer Aca-

demic Publishers, May 2002.

[34] E. De Klerk, M. Laurent, and P. Parrilo, On the equivalence of alge-

braic approaches to the minimization of forms on the simplex, Preprint, CWI,

Amsterdam, October 2003.

[35] E. De Klerk and D. Pasechnik, Approximating the stability number of graph

via copositive programming, SIAM Journal on Optimization, 12(2002), pp. 875-

892.

[36] E. De Klerk, D.V. Pasechnik, and J.P. Warners, Approximate graph

coloring and Max-k-cut algorithms based on the ζ function, to appear in Journal

of Combinatorial Optimization, 2004.

[37] E. De Klerk, C. Roos, and T. Terlaky, Infeasible-start semidefinite pro-

gramming algorithms via self-dual embeddings, Fields Institute Communications,

18(1998), pp. 215-236.

[38] E. De Klerk and H. Van Maaren, On semiefinite programming relaxations

of 2+p-SAT, Annals of Mathematics of Artificial Intelligence, 37(2003), pp. 285-

305.

[39] E. De Klerk, J. Warners, and H. Van Maaren, Relaxations of the sat-

isfiability problem using semidefinite programming, Journal of Automated Rea-

soning, 24(2000), pp. 37-65.

[40] M.M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer-

Verlag, Berlin, 1997.

[41] S. Elhedhli and J.L. Goffin, The integration of an interior-point cutting

plane method within a branch-and-price algorithm, to appear in Mathematical

Programming 2004.

50

[42] U. Feige and M. Goemans, Approximating the value of two prover proof

systems withe applications to MAX-2SAT and MAX-DICUT, In Proceedings of

the 3rd Isreal Symposium on Theory of Computing and Systems, ACM, NY, pp.

182-189, 1995.

[43] A. Frieze and M.R. Jerrum, Improved approximation algorithms for Max

k-cut and Max Bisection, Algorithmica 18(1997), pp. 61-77.

[44] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, Exploiting sparsity

in semidefinite programming via matrix completion I: General framework, SIAM

Journal on Optimization, 11(2000), pp. 647-674.

[45] M. Fukuda, M. Kojima, and M. Shida, Lagrangian dual interior-point meth-

ods for semidefinite programs, SIAM Journal on Optimization, 12(2002), pp.

1007-1031.

[46] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to

the Theory of NP-Completeness, San Francisco, California: W.H. Freeman &

Company, 1979.

[47] M. Goemans and D.P. Williamson, Improved approximation algorithms for

max cut and satisfiability problems using semidefinite programming, J. A.C.M 42

(1995), pp. 1115-1145.

[48] M. Goemans and D.P. Williamson, Approximation algorithms for MAX-3-

CUT and other problems via complex semidefinite programming, In Proceedings

of the 33rd Annual ACM Symposium on Theory of Computing, ACM, NY, pp.

443-452, 2001.

[49] J.L. Goffin, J. Gondzio, R. Sarkissian, and J.P. Vial, Solving nonlin-

ear multicommodity flow problems by the analytic center cutting plane method,

Mathematical Programming, 76(1997), pp. 131-154.

[50] J.L. Goffin, Z.Q. Luo, and Y. Ye, Complexity analysis of an interior point

cutting plane method for convex feasibility problems, SIAM Journal on Optimiza-

tion, 6(1996), pp. 638-652.

[51] J.L. Goffin and J.P. Vial, Convex nondifferentiable optimization: a survey

focused on the analytic center cutting plane method, Optimization Methods and

Software, 17(2002), pp. 805-867.

51

[52] J.L. Goffin and J.P. Vial, Multiple cuts in the analytic center cutting plane

method, SIAM Journal on Optimization, 11(2000), pp. 266-288.

[53] J. Gondzio, O. du Merle, R. Sarkissian, and J.P. Vial, ACCPM - A

library for convex optimization based on an analytic center cutting plane method,

European Journal of Operations Research, 94(1996), pp. 206-211.

[54] B. Grone, C.R. Johnson, E. Marques de Sa, and H. Wolkowicz,

Positive definite completions of partial Hermitian matrices, Linear Algebra and

its Applications, 58(1984), pp. 109-124.

[55] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and

Combinatorial Optimization, Springer Verlag, 1993.

[56] J. Håstad, Some optimal inapproximability results, In Proc. of the 29th ACM

Symposium on Theory and Computing, (1997), pp. 1-10.

[57] C. Helmberg, Semidefinite Programming for Combinatorial Optimization, Ha-

bilitation Thesis, ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, October

2000.

[58] C. Helmberg, Fixing variables in semidefinite relaxations, SIAM Journal on

Matrix Analysis and Applications, 21(2000), pp. 952-969.

[59] C. Helmberg, Numerical evaluation of SBmethod, Mathematical Program-

ming, 95(2003), pp. 381-406.

[60] C. Helmberg and F. Oustry, Bundle methods to minimize the maximum

eigenvalue function. In Handbook of Semidefinite Programming: H. Wolkowicz,

R. Saigal, and L. Vandenberghe (editors), Kluwer Academic Publishers, (2000),

pp. 307-337.

[61] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite pro-

gramming, SIAM Journal on Optimization, 10(2000), pp. 673-696.

[62] C. Helmberg and F. Rendl, Solving quadratic (0,1) problems by semidefinite

programs and cutting planes, Mathematical Programming, 82(1998), pp. 291-315.

[63] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, An inte-

rior point method for semidefinite programming, SIAM Journal on Optimization,

6(1996), pp. 673-696.

52

[64] C. Helmberg, Semidefinite Programming webpage,

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

[65] D. Henrion and J. Lasserre, Gloptipoly: Global optimization over polynomi-

als with MATLAB and SeDuMi, ACM Transactions on Mathematical Software,

29(2003), pp. 165-194.

[66] D. Henrion and J. Lasserre, Detecting global optimality and extracting so-

lutions in Globtipoly, Technical Report LAAS-CNRS, October 2003.

[67] Interior-Point Methods Online,

http://www-unix.mcs.anl.gov/otc/InteriorPoint

[68] A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Re-

sende, Computational experience with an interior point algorithm on the satis-

fiability problem, Annals of OR., 25(1990), pp. 43-58.

[69] A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Re-

sende, A continuous approach to inductive inference, Mathematical Program-

ming 57(1992), pp. 215-238.

[70] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by

semidefinite programming, Journal of A.C.M., 45(1998), pp. 246-265.

[71] H. Karloff, How good is the Goemans-Williamson MAX CUT algorithm?,

SIAM Journal on Computing, 29(1999), pp. 336-350.

[72] H. Karloff and U. Zwick, A 7/8 approximation algorithm for MAX 3SAT?,

In Proceedings of the 38th Annual IEEE Symposium on Foundations of Com-

puter Science, IEEE Computer Science Press, Los Alamitos, CA, pp. 406-415,

1997.

[73] N. Karmarkar, A new polynomial time algorithm for linear programming,

Combinatorica, 4(1984), pp. 373-395.

[74] N. Karmarkar, An interior point approach to NP-complete problems, Contem-

porary Mathematics, 114(1990), pp. 297-308.

[75] N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan, An interior

point approach to solve computationally difficult set covering problems, Mathe-

matical Programming, 52(1991), pp. 597-618.

53

[76] S. Kim and M. Kojima, Second order cone programming relaxations of non-

convex quadratic optimization problems, Optimization Methods & Software,

15(2001), pp. 201-224.

[77] J. Kleinberg and M. Goemans, The Lovász theta function and a semidefinite

programming relaxation of vertex cover, SIAM Journal on Discrete Mathematics,

11(1998), pp. 196-204.

[78] M. Kocvara and M. Stingl, PENNON: A code for convex nonlinear and

semidefinite programming, Optimization Methods & Software, 18(2003), pp. 317-

333.

[79] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the mono-

tone linear complementarity problem in symmetric matrices, SIAM Journal on

Optimization, 7(1997), pp. 86-125.

[80] M. Kojima and L. Tuncel, Cones of matrices and successive convex relax-

ations of nonconvex sets, SIAM Journal on Optimization, 10(2000), pp. 750-778.

[81] K. Krishnan and J.E. Mitchell, Properties of a cutting plane method for

semidefinite programming, Technical Report, Department of Computational &

Applied Mathematics, Rice University, May 2003.

[82] K. Krishnan and J.E. Mitchell, An unifying survey of exisiting cutting

plane methods for semidefinite programming, AdvOL-Report No. 2004/1, Ad-

vanced Optimization Laboratory, McMaster University, December 2003 (to ap-

pear in Optimization Methods & Software).

[83] K. Krishnan, G. Pataki, and Y. Zhang, A non-polyhedral primal active

set approach to semidefinite programming, Technical Report, Dept. of Computa-

tional & Applied Mathematics, Rice University, forthcoming.

[84] J.B. Lasserre, Global optimization with polynomials and the problem of mo-

ments, SIAM Journal on Optimization, 11(2001), pp. 796-817.

[85] J.B. Lasserre, An explicit exact SDP relaxation for nonlinear 0-1 programs,

SIAM Journal on Optimization, 12(2002), pp. 756-769.

[86] M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver and

Lasserre relaxations for 0-1 programming, Mathematics of Operations Research,

28(2003), pp. 470-496.

54

[87] M. Laurent, A tour d’horizon on positive semidefinite and Euclidean distance

matrix completion problems, In Topics in Semidefinite and Interior Point Meth-

ods, Volume 18 of The Fields Institute for Research in Mathematical Sciences,

Communications Series, Providence, Rhode Island, 1998, AMS.

[88] M. Laurent, Semidefinite relaxations for max-cut, In M. Grötschel (editor),

The Sharpest Cut, Festschrift in honor of M. Padberg’s 60th birthday, pp. 291-

327, MPS-SIAM, 2004.

[89] M. Laurent and F. Rendl, Semidefinite programming and integer program-

ming, Technical Report PNA-R0210, CWI, Amsterdam, April 2003.

[90] C. Lemaréchal and F. Oustry, Semidefinite relaxations and Lagrangian

duality with applications to combinatorial optimization, RR-3710, INRIA Rhone-

Alpes, June 1999.

[91] L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Infor-

mation Theory, 25(1979), pp. 1-7.

[92] L. Lovász and A. Schrijver, Cones of matrices and set functions and 0-1

optimization, SIAM Journal on Optimization, 1(1991), pp. 166-190.

[93] Z.Q. Luo and J. Sun, An analytic center based column generation method for

convex quadratic feasibility problems, SIAM Journal on Optimization, 9(1998),

pp. 217-235.

[94] S. Mahajan and R. Hariharan, Derandomizing semidefinite programming

based approximation algorithms, SIAM Journal on Computing, 28(1999), pp.

1641-1663.

[95] J.E. Mitchell,Computational Experience with an Interior Point Cutting Plane

Algorithm, SIAM Journal on Optimization, 10(2000), pp. 1212-1227.

[96] J.E. Mitchell, Polynomial interior point cutting plane methods, Optimization

Methods & Software, 18(2003), pp. 507-534.

[97] J.E. Mitchell, Restarting after branching in the SDP approach to MAX-CUT

and similar combinatorial optimization problems, Journal of Combinatorial Op-

timization, 5(2001), pp. 151-166.

55

[98] J.E. Mitchell, P. Pardalos, and M.G.C. Resende, Interior point methods

for combinatorial ptimization, In Handbook of Combinatorial Optimization, Vol.

1 (1998), Kluwer Academic Publishers, pp. 189-297.

[99] J.E. Mitchell and B. Borchers, Solving real-world linear ordering problems

using a primal-dual interior point cutting plane method, Annals of Operations

Research, 62(1996), pp. 253-276.

[100] J.E. Mitchell and S. Ramaswamy, A long step cutting plane algorithm for

linear and convex programming, Annals of OR, 99(2000), pp. 95-122.

[101] J.E. Mitchell and M.J. Todd, Solving combinatorial optimization problems

using Karmarkar’s algorithm, Mathematical Programming, 56(1992), pp. 245-

284.

[102] H.D. Mittleman, An independent benchmarking of SDP and SOCP software,

Mathematical Programming, 95(2003), pp. 407-430.

[103] F.S. Mokhtarian and J.L. Goffin, A nonlinear analytic center cutting

plane method for a class of convex programming problems, SIAM Journal on

Optimization, 8(1998), pp. 1108-1131.

[104] R.D.C Monteiro, Primal-dual path following algorithms for semidefinite pro-

gramming, SIAM Journal on Optimization, 7(1997), pp. 663-678.

[105] R.D.C. Monteiro, First and second order methods for semidefinite program-

ming, Mathematical Programming, 97(2003), pp. 209-244.

[106] T.S. Motzkin and E.G. Strauss, Maxima for graphs and a new proof of a

theorem of Turan, Canadian Journal of Mathematics, 17(1965), pp. 533-540.

[107] M. Muramatsu and T. Suzuki, A new second-order cone programming re-

laxation for maxcut problems, to appear in Journal of Operations Research of

Japan, 2002.

[108] K.G. Murthy and S.N. Kabadi, Some NP-complete problems in quadratic

and linear programming, Mathematical Programming, 39(1987), pp. 117-129.

56

[109] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota,

Exploiting sparsity in semidefinite programming via matrix completion II: im-

plementation and numerical results, Mathematical Programming, 95(2003), pp.

303-327.

[110] A.S. Nemirovskii and D.B. Yudin, Problem Complexity and Method Effi-

ciency in Optimization, John Wiley, 1983.

[111] Y.E. Nesterov, Semidefinite relaxation and nonconvex quadratic optimiza-

tion, Optimization Methods and Software, 9(1998), pp. 141-160.

[112] Y.E. Nesterov, Squared functional systems and optimization problems, In

J.B.G. Frenk, C. Roos, T. Terlaky and S. Zhang (editors), High Performance

Optimization, pp. 405-440, Kluwer Academic Publishers, 2000.

[113] Y.E. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms

in Convex Programming, SIAM Studies in Applied Mathematics, PA, 1993.

[114] Y.E. Nesterov and M.J. Todd, Primal dual interior point methods for

self-scaled cones, SIAM Journal on Optimization, 8(1998), pp. 324-364.

[115] Optimization Online, http://www.optimization-online.org

[116] M. Oskoorouchi and J.L. Goffin, The analytic center cutting plane

method with semidefinite cuts, SIAM Journal on Optimization, 13(2003), pp.

1029-1053.

[117] M. Oskoorouchi and J.L. Goffin, An interior point cutting plane method

for convex feasibility problems with second order cone inequalities, Technical Re-

port, College of Business Administration, California State University, San Mar-

cos, April 2003.

[118] F. Oustry, A second order bundle method to minimize the maximum eigen-

value function, Mathematical Programming, 89(2000), pp. 1-33.

[119] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-

gorithms and Complexity, Prentice Hall, 1982.

[120] P.A. Parrilo, Structured Semidefinite Programs and Semialgebraic methods in

Robustness and Optimization, Ph.D. Thesis, California Institute of Technology,

May 2000.

57

[121] P.A. Parrilo, Semidefinite programming relxations for semialgebraic prob-

lems, Mathematical Programming, 96(2003), pp. 293-320.

[122] G. Pataki, On the rank of extreme matrices in semidefinite programs and

the multiplicity of optimal eigenvalues, Mathematics of Operations Research,

23(1998), pp. 339-358.

[123] G. Pataki, Cone-LP’s and semidefinite programs: geometry and simplex type

method, In Proceedings of the 5th IPCO Conference, Lecture Notes in Computer

Science, 1084(1996), pp. 162-174.

[124] G. Pataki, Cone Programming and Nonsmooth Optimization: Geometry

and Algorithms, Ph.D. Thesis, Graduate School of Industrial Administration,

Carnegie Mellon University, November 1996.

[125] S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relxa-

tions for {0, 1}-quadratic programming, Journal of Global Optimization, 7(1995),

pp. 51-73.

[126] S. Poljak and Z. Tuza, The expected relative error of the polyhedral ap-

proximation of the maxcut problem, Operations Research Letters, 16(1994), pp.

191-198.

[127] L. Porkoláb and L. Khachiyan, On the complexity of semidefinite pro-

grams, Journal of Global Optimization, 10(1997), pp. 351-365.

[128] V. Powers and B. Reznick, A new bound for Polya’s theorem with applica-

tions to polynomials positive on polyhedra, Journal of Pure and Applied Algebra,

164(2001), pp. 221-229.

[129] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, SOSTOOLS:

Sum of squares optimization toolbox for MATLAB, Available at

http://www.cds.caltech.edu/sostools, 2002.

[130] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana

University Mathematics Journal, 42(1993), pp. 969-984.

[131] A.J. Quist, E. De Klerk, C. Roos, and T. Terlaky, Copositive relax-

ations for general quadratic programming, Optimization Methods and Software,

9(1998), pp. 185-209.

58

[132] M. Ramana, An algorithmic analysis of multiquadratic and semidefinite pro-

gramming problems, Ph.D. Thesis, The John Hopkins University, October 1993.

[133] M. Ramana, An exact duality theory for semidefinite programming and its

complexity implications, Mathematical Programming, 77(1997), pp. 129-162.

[134] M. Ramana, L. Tuncel, and H. Wolkowicz, Strong duality for semidef-

inite programming, SIAM Journal on Optimization, 7(1997), pp. 641-662.

[135] F. Rendl and R. Sotirov, Bounds for the quadratic assignment problem

using the bundle method, Technical Report, University of Klagenfurt, Universi-

taetsstrasse 65-67, Austria, August 2003.

[136] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Op-

timization, MPS-SIAM Series on Optimization, 2001.

[137] C. Roos, T. Terlaky, and J.P. Vial, Theory and Algorithms for Linear

Optimization: An Interior Point Approach, John Wiley & Sons, Chichester,

England, 1997.

[138] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience,

New York, 1986.

[139] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans-

actions on Information Theory, 25(1979), pp. 425-429.

[140] P.D. Seymour, Matroids and multicommodity flows, European Journal of

Combinatorics, 2(1981), pp. 257-290.

[141] H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the

continuous and convex hull representations for zero-one programming problems,

SIAM Journal on Discrete Mathematics, 3(1990), pp. 411-430.

[142] N. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer

Academic Publishers, 1998.

[143] J.F. Sturm, Primal-Dual Interior Point Approach to Semidefinite Program-

ming, Tinbergen Institute Research Series, vol 156, Thesis Publishers, Amster-

dam, The Netherlands, 1997; also appeared in High performance optimization,

Frenk et al. editors, Kluwer Academic Publishers, 2000.

59

[144] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones, Optimization Methods and Software, 11-12(1999), pp. 625-653.

[145] J. Sun, K.C. Toh, and G.Y. Zhao, An analytic center cutting plane method

for the semidefinite feasibility problem, Mathematics of Operations Research,

27(2002), pp. 332-346.

[146] T. Terlaky, Interior Point Methods of Mathematical Programming, Kluwer

Academic Publishers, 1996.

[147] M.J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), pp. 515-560.

[148] M.J. Todd, A study of search directions in interior point methods for semidef-

inite programming, Optimization Methods and Software, 12(1999), pp. 1-46.

[149] M.J. Todd, K.C. Toh, and R.H. Tütüncü, On the Nesterov-Todd direction

in semidefinite programming, SIAM Journal on Optimization, 8(1998), pp. 769-

796.

[150] K.C. Toh, Solving large scale semidefinite programs via an iterative solver on

the augmented system, SIAM Journal on Optimization, 14(2003), pp. 670-698.

[151] K.C. Toh and M. Kojima, Solving some large scale semidefinite programs

via the conjugate residual method, SIAM Journal on Optimization, 12(2002), pp.

669-691.

[152] K.C. Toh, G.Y. Zhao, and J. Sun, A multiple-cut analytic center cutting

plane method for semidefinite feasibility problems, SIAM Journal on Optimiza-

tion, 12(2002), pp. 1026-1046.

[153] R.H. Tütüncü, K.C. Toh, and M.J. Todd, Solving semidefinite-quadratic-

linear programs using SDPT3, Mathematical Programming, 95(2003), pp. 189-

217.

[154] P.M. Vaidya, A new algorithm for minimizing convex functions over convex

sets, Mathematical Programming, 73(1996), pp. 291-341.

[155] L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review,

38(1996), pp. 49-95.

60

[156] S.A. Vavasis, Nonlinear Optimization, Oxford Science Publications, New

York, 1991.

[157] J.P. Warners, B. Jansen, C. Roos, and T. Terlaky, A potential reduc-

tion approach to the frequency assignment problem, Discrete Applied Mathemat-

ics, 78(1997), pp. 252-282.

[158] J.P. Warners, B. Jansen, C. Roos, and T. Terlaky, Potential reduc-

tion approaches for structured combinatorial optimization problems, Operations

Research Letters, 21(1997), pp. 55-65.

[159] S.J. Wright, Primal-dual interior point methods, SIAM, Philadelphia, 1997.

[160] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook on Semidef-

inite Programming, Kluwer Academic Publishers, 2000.

[161] Y. Ye, Approximating quadratic programming with bound and quadratic con-

straints, Mathematical Programming, 84(1999), pp. 219-226.

[162] Y. Ye, A .699 approximation algorithm for max bisection, Mathematical Pro-

gramming, 90(2001), pp. 101-111.

[163] Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons,

New York, 1997.

[164] Y. Zhang, On extending some primal-dual interior point algorithms from lin-

ear programming to semidefinite programming, SIAM Journal on Optimization,

8(1998), pp. 365-386.

[165] U. Zwick, Outward rotations: A tool for rounding solutions of semidefinite

programming relaxations, with applications to maxcut and other problems, In

Proc. of 31st STOC, (1999), pp. 496-505.

61

