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Optimization over Degree Sequences

Antoine Deza ∗ Asaf Levin † Syed M. Meesum ‡ Shmuel Onn §

Abstract

We introduce and study the problem of optimizing arbitrary functions over degree
sequences of hypergraphs and multihypergraphs. We show that over multihypergraphs
the problem can be solved in polynomial time. For hypergraphs, we show that deciding if
a given sequence is the degree sequence of a 3-hypergraph is computationally prohibitive,
thereby solving a 30 year long open problem. This implies that optimization over hyper-
graphs is hard already for simple concave functions. In contrast, we show that for graphs,
if the functions at vertices are the same, then the problem is polynomial time solvable. We
also provide positive results for convex optimization over multihypergraphs and graphs
and exploit connections to degree sequence polytopes and threshold graphs. We then
elaborate on connections to the emerging theory of shifted combinatorial optimization.

Keywords: graph, hypergraph, combinatorial optimization, degree sequence, threshold
graph, shifted combinatorial optimization

1 Introduction

The degree sequence of a (simple) graph G = (V,E) with V = [n] := {1, . . . , n} and m = |E|
edges is the vector d = (d1, . . . , dn) with di = |{e ∈ E : i ∈ e}| the degree of vertex i for all i.

Degree sequences have been studied by many authors starting with the celebrated Erdös-
Gallai paper [2, 1960] which effectively characterizes the degree sequences of graphs.

In this article we are interested in the following discrete optimization problem. Given
n,m, and functions fi : {0, 1, . . . ,m} → R for i = 1, . . . , n, find a graph on [n] with m edges
having degree sequence d maximizing

∑n
i=1 fi(di). The special case with fi(t) = t2 for all i,

that is, finding a graph maximizing the sum of degree squares, was solved before, see [15].
More generally, we are interested in the problem over (uniform) k-hypergraphs. In the

sequel it will be convenient to use a vector notation and so we make the following definitions.
A k-hypergraph with m edges on [n] is a subset H ⊆ {0, 1}nk := {x ∈ {0, 1}n : ∥x∥1 = k}
with |H| = m (keeping in mind also the interpretation of H as the set of supports of its
vectors). We are also interested in the following. A k-multihypergraph with m edges on

[n] is a matrix H ∈ ({0, 1}nk )
m, that is, an n × m matrix with each column Hj ∈ {0, 1}nk

representing an edge (that is, each column is a 0−1 vector containing exactly k ones), so that
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multiple (identical) edges are allowed (but no loops). The degree sequence of H is the vector
d =

∑

H :=
∑

{x : x ∈ H} for hypergraphs and d =
∑

H :=
∑m

j=1H
j for multihypergraphs.

We pose the following algorithmic problem.

Optimization over Degree Sequences. Given k, n,m and functions fi : {0, . . . ,m} → R,
find a k-(multi)hypergraph H whose degree sequence d :=

∑

H maximizes
∑n

i=1 fi(di).

The case of linear functions is very simple and will be discussed in the short Section 3.
For arbitrary functions and multihypergraphs we solve the problem completely in Section 4.

Theorem 1.1 The general optimization problem over degree sequences of multihypergraphs

can be solved in polynomial time for any k, n,m and any univariate functions f1, . . . , fn.

For hypergraphs the problem is much harder. On the positive side we show in Section 5
the following theorem, broadly extending the result for sum of degree squares of graphs.

Theorem 1.2 For k = 2, that is, graphs, the optimization problem over degree sequences can

be solved in O(n5m2) time for any n,m and any identical univariate functions f1 = · · · = fn.

When the identical univariate functions are convex we give a better bound in Theorem 6.3.

In order to obtain our result on the negative side, we consider also the decision problem:
given k and d ∈ Zn

+, is d the degree sequence of some hypergraph H ⊆ {0, 1}nk? For k = 1
it is trivial as d is a degree sequence if and only if d ∈ {0, 1}n. For k = 2 it is solved by the
aforementioned Erdös-Gallai theorem [2, 1960] which implies that d is a degree sequence of
a graph if and only if

∑

di is even and, permuting d so that d1 ≥ · · · ≥ dn, the inequalities
∑j

i=1 di −
∑n

i=l+1 di ≤ j(l − 1) hold for 1 ≤ j ≤ l ≤ n, yielding a polynomial time algorithm.

For k = 3 it was raised 30 years ago by Colbourn-Kocay-Stinson [1, Problem 3.1, 1986]
and remained open to date. We solve it in Section 2 by showing the following theorem.

Theorem 1.3 It is NP-complete to decide if d ∈ Zn
+ is the degree sequence of a 3-hypergraph.

This leads at once to the following negative statement by presenting an optimization
problem of simple concave functions over degree sequences of 3-hypergraphs whose optimal
value is zero if and only if a given d ∈ Zn

+ is a degree sequence of some 3-hypergraph.

Corollary 1.4 For k = 3 the optimization problem over degree sequences of 3-hypergraphs is

NP-hard already for concave functions of the form fi(t) = −(t− di)2 with di ∈ Z+ for each i.

Next, in Section 6, we discuss optimization of convex functions over degree sequences.
In fact, our results hold for the more general problem of maximizing any convex function
f : {0, 1, . . . ,m}n → R which is not necessarily separable as considered above. For this
we discuss the degree sequence polytopes studied in [7, 8, 12, 14, 16] and references therein,
introduce and study degree sequence polytopes of hypergraphs with prescribed number of
edges, and show that for k = 2 their vertices correspond to suitable threshold graphs [13].

Finally, in Section 7, we show that optimization over degree sequences can be viewed within
the framework of shifted combinatorial optimization recently introduced and investigated in
the series of papers [3, 6, 9, 11], and contributes to this emerging new theory.
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2 The complexity of deciding hypergraph degree sequences

Here we consider the complexity of deciding the existence of a hypergraph with a given
degree sequence and prove the following theorem solving a problem raised 30 years ago by
Colbourn-Kocay-Stinson [1, Problem 3.1, 1986].

Theorem 1.3 It is NP-complete to decide if d ∈ Zn
+ is the degree sequence of a 3-hypergraph.

Proof. The problem is in NP since if d is a degree sequences then a hypergraph H ⊆ {0, 1}n3
of cardinality |H| ≤

(

n
3

)

= O(n3) can be exhibited and d =
∑

H verified in polynomial time.
Now consider the following so-called 3-partition problem: given a ∈ Zn

+ and b ∈ Z+, decide
if there is an H ⊆ {0, 1}n3 such that ax :=

∑n
i=1 aixi = b for all x ∈ H and

∑

H = 1 where 1
is the all-ones vector. It is well known to be NP-complete [4] and we reduce it to ours.

Given such a and b define w ∈ Zn by wi := 3ai − b for all i. Then for any x ∈ {0, 1}n3 we
have wx = 3ax − b

∑n
i=1 xi = 3(ax − b) and so wx = 0 if and only if ax = b. So H satisfies

ax = b for all x ∈ H and
∑

H = 1 if and only if wx = 0 for all x ∈ H and
∑

H = 1. Note
that if this holds then w1 = w

∑

H =
∑

{wx : x ∈ H} = 0 so we may and do assume w1 = 0
(that is, if w1 ̸= 0 then there is no solution to the 3-partition problem and we can define d to
be a unit vector in Rn making sure there is no 3-hypergraph with degree sequence d as well).

For σ ∈ {−, 0,+} define a hypergraph Sσ := {x ∈ {0, 1}n3 : sign(wx) = σ} so that these
three hypergraphs form a partition S− * S0 * S+ = {0, 1}n3 of the complete 3-hypergraph.

Define d := 1+
∑

S+. We claim that there is a 3-hypergraph G with degree sequence d

if and only if there is a 3-hypergraph H with wx = 0 for all x ∈ H and
∑

H = 1. So the
3-partition problem reduces to deciding degree sequences, showing the latter is NP-complete.

We now prove the claim. Suppose first H satisfies wx = 0 for all x ∈ H and
∑

H = 1.
Then H ⊆ S0 so H ∩ S+ = ∅. Let G := H * S+. Then

∑

G =
∑

H +
∑

S+ = 1+
∑

S+ = d

so G has degree sequence d. Conversely, suppose G has degree sequence d. Then

w
∑

G =
∑

x∈G∩S−

wx+
∑

x∈G∩S0

wx+
∑

x∈G∩S+

wx ≤
∑

x∈S+

wx = w1+ w
∑

S+ = wd

with equality if and only if G ∩ S− = ∅ and G ∩ S+ = S+, since sign(wx) = σ for each
σ ∈ {−, 0,+} and every x ∈ Sσ. Since

∑

G = d we do have equality w
∑

G = wd above. Let
H := G ∩ S0. Then wx = 0 for all x ∈ H and

∑

H =
∑

G−
∑

S+ = 1 as claimed.

The last hardness result for 3-hypergraph is easily extended for k-hypergraph for all fixed
values of k such that k ≥ 3 as we now demonstrate.

Corollary 2.1 Fix any k ≥ 3. It is NP-complete to decide if d ∈ Zn
+ is the degree sequence

of a k-hypergraph.

Proof. Like the case of k = 3, the problem is in NP since if d is a degree sequence then a
hypergraph H ⊆ {0, 1}n3 of cardinality |H| ≤

(

n
k

)

= O(nk) can be exhibited and d =
∑

H

verified in polynomial time.
Next we reduce the problem for 3-hypergraph into the problem for k-hypergraph. Let

d = (d1, d2, . . . , dn) be the instance of the input sequence for the problem on 3-hypergraph.
Let m = 1

3

∑n
i=1 di be the number of edges, and the question is equivalent to the question if d
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is a degree sequence of a 3-hypergraph with m edges. We construct an input to the problem
for k-hypergraphs by letting d′ = (d′1, d

′
2, . . . d

′
n+k−3) where d′i = di for 1 ≤ i ≤ n, and d′i = m

for i > n. The problem is to decide if d′ is a degree sequence of a k-hypergraph with m edges.
The correctness of this reduction follows as any such k-hypergraph must satisfy that ev-

ery edge must contain the vertices n + 1, . . . , n + k − 3. Thus, if d is a degree sequence of a
3-hypergraph H, we take each edge in H and add n + 1, . . . n + k − 3 to obtain an edge on
[n + k − 3], and the collection of these edges is a k-hypergraph with degree sequence d′. In
the other direction, if d′ is a degree sequence of k-hypergraph H ′ on [n + k − 3], then every
edge of H ′ must contain the vertices n+1, . . . n+ k− 3, and if we remove these vertices from
each edge of H ′ we get a collection of edges in [n] and the corresponding 3-hypergraph has
degree sequence d.

3 Linear functions

Here we discuss the simple case of linear functions, that is, with fi(t) = wit for each i, where
w = (w1, . . . , wn) is a given profit vector. So the degree sequence optimization problems are

max{w
∑

H : H ∈ ({0, 1}nk )
m} , max{w

∑

H : H ⊆ {0, 1}nk , |H| = m} .

Proposition 3.1 The linear optimization problem over degree sequences of multihypergraphs

and over degree sequences of hypergraphs can be solved in polynomial time for all n, k,m.

Proof. First, consider the case of multihypergraphs. Since w
∑

H =
∑m

j=1wH
j and all

columns Hj can be the same, an optimal solution will be a matrix H = [x, . . . , x] with all
columns equal to some x ∈ {0, 1}nk maximizing wx. Such an x can be found by sorting
w, that is, if for a permutation π of [n] we have wπ(1) ≥ · · · ≥ wπ(n), then we can take
x := 1π(1) + · · ·+ 1π(k) where 1i denotes the standard ith unit vector in Rn.

Next, consider the case of hypergraphs. Since w
∑

H =
∑

{wx : x ∈ H}, an optimal so-
lution will be a hypergraph H consisting of the m vectors x ∈ {0, 1}nk with largest values wx.
For k fixed we can simply compute wx for each of the O(nk) vectors in {0, 1}nk in polynomial
time and pick the best m vectors. For variable k, we can use the algorithm of Lawler [10] to
find the m vectors x ∈ {0, 1}nk with largest values wx in time polynomial in n, k,m.

4 Arbitrary functions over multihypergraphs

For multihypergraphs there is a simple characterization of degree sequences which follows
from results of [17, 1957] on 0− 1 matrices, and a simple greedy procedure for constructing a
hypergraph from its degree sequence. We record these facts below and provide a short proof.

Proposition 4.1 A vector d ∈ Zn
+ is a degree sequence of k-multihypergraph H with m edges

if and only if
∑n

i=1 di = km and di ≤ m for all i, and H is efficiently constructible from d.
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Proof. The conditions on d are clearly necessary. We prove by induction on m that given d

satisfying the conditions we can construct a multihypergraph H with d =
∑

H. If m = 0
this is the empty multihypergraph. Suppose m ≥ 1. Permuting the di we may assume
d1 ≥ · · · ≥ dn. We claim dk ≥ 1 and dk+1 ≤ m − 1. If dk = 0 then km =

∑

di ≤ (k − 1)m
which is impossible. If dk+1 = m then km =

∑

di ≥ (k + 1)m which is again impossible.
Define a vector d′ by d′i := di − 1 for i ≤ k and d′i := di for i > k. This d′ satisfies the
conditions with m− 1 and by induction we can construct a multihypergraph [H1, . . . ,Hm−1]
with degree sequence d′. Then H := [H1, . . . ,Hm−1,Hm] with Hm := 11 + · · · + 1k is the
desired multihypergraph with degree sequence d. So the induction follows and we are done.

We can now prove our theorem on optimization over degree sequences of multihypergraphs.

Theorem 1.1 The general optimization problem over degree sequences of multihypergraphs
can be solved in polynomial time for any k, n,m and any univariate functions f1, . . . , fn.

Proof. By Proposition 4.1, we need to solve the following integer programming problem,

max{
n
∑

i=1

fi(di) : d ∈ Z
n
+ ,

n
∑

i=1

di = km , di ≤ m, i = 1, . . . , n} ,

find an optimal d, and then use the algorithm of Proposition 4.1 to find an H with d =
∑

H.
Finding an optimal d can be done by dynamic programming. There are n stages where

the decision at stage i is 0 ≤ di ≤ m with reward fi(di). The state at the end of stage i is
0 ≤ si ≤ km representing the partial sum si =

∑i
j=1 dj starting with s0 := 0. Let f∗

i (si) be
the maximum total reward of a path leading from the initial state s0 to state si in stage i.
The recursively computable optimal value at state si is given by

f∗
0 (s0) := 0 , f∗

i (si) := max{f∗
i−1(si−1) + fi(di) : si = si−1 + di} , i = 1, . . . , n .

The optimal value is f∗
n(km) and the optimal decisions and the sequence of states on the

optimal path can be reconstructed backwards starting with s∗n := km recursively by

(s∗i−1, d
∗
i ) ∈ argmax{f∗

i−1(si−1) + fi(di) : s∗i = si−1 + di} , i = n, . . . , 1 .

Clearly this is doable in time polynomial in k, n,m for any univariate functions f1, . . . , fn.
This last claim follows since there are O(n) stages and in each stage there are O(mk) states
and the computation of f∗i for a given state in stage i takes O(m) (for all i), and thus the
time complexity of this algorithm is O(nkm2).

5 Identical functions over graphs

In this section we restrict attention to graphs. We use alternatively the interpretation of a
graph as G ⊆ {0, 1}n2 and G = ([n], E). We note the following characterization of degree
sequences of graphs from [5, 1962] which leads to a simple greedy procedure for constructing
a graph from its degree sequence. A vector d ∈ Zn

+ is reducible if, permuting it so that
d1 ≥ · · · ≥ dn, we have that dd1+1 ≥ 1. The reduction of d is the vector d′ ∈ Z

n−1
+ defined by

d′ := (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn). Here is the statement and the short proof.
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Proposition 5.1 A vector d ∈ Zn
+ is a degree sequence of a graph G if and only if d is

reducible and its reduction is also a degree sequence. So G is recursively constructible from d.

Proof. Assume d1 ≥ · · · ≥ dn. Suppose d is reducible and its reduction d′ is the degree
sequence of a recursively constructible graph G′ on [n] \ {1}. Then the graph G obtained
from G′ by adding vertex 1 and connecting it to vertices 2, . . . , d1 + 1 has degree sequence d.

Conversely, suppose d is the degree sequences of G = ([n], E). We show it is also the
degree sequence of a graph with 1 as a neighbor of 2, . . . , d1 + 1, which will show that d is
reducible and its reduction is also a degree sequence. Call i ̸= j a bad pair if {1, i} ∈ E and
{1, j} ̸∈ E but di < dj . Then there must be a k with {i, k} ̸∈ E and {j, k} ∈ E. Then
the graph obtained from G by dropping edges {1, i}, {j, k} and adding {1, j}, {i, k} has the
same degree sequence but fewer bad pairs. Repeating this procedure we arrive at a graph with
degree sequence d and no bad pairs which implies that it has 1 as a neighbor of 2, . . . , d1+1.

We can now prove our theorem on optimization over degree sequences of graphs.

Theorem 1.2 For k = 2, that is, graphs, the optimization problem over degree sequences can
be solved in O(n5m2) time for any n,m and any identical univariate functions f1 = · · · = fn.

Proof. Since the functions fi are assumed identical, we may optimize over sorted degree
sequences d1 ≥ · · · ≥ dn, and in fact, this is the reason our approach needs this assumption.
For simplicity of notation we denote by f the common function f1 = · · · = fn = f . By
Proposition 5.1 and by the original version of the Erdös-Gallai characterization of sorted
degree sequences, we need to solve the following nonlinear integer optimization problem,

max
n
∑

i=1

f(di)

s.t. d ∈ Z
n
+ , d1 ≥ · · · ≥ dn ,

∑

di = 2m

j
∑

i=1

di − j(j − 1) ≤
n
∑

i=j+1

min{j, di} , j = 1, . . . , n ,

find an optimal d, and then use the algorithm of Proposition 5.1 to find a G with d =
∑

G.
Finding an optimal d can be done again by dynamic programming. This time in every

computational path there are at most n stages, where the decision in stage i is the value of di
as well as the number αi of vertices with degree exactly i (of indices βi + 1, . . . βi + αi). The
reward of this decision is f(di) +αi · f(i). A final state in the dynamic programming table is
a state corresponding to a value of i that equals max{j : dj > j} (in this case βi = i and the
total degrees of all vertices is 2m). Our goal is to find a computational path (corresponding to
a path of decisions) that maximizes the total reward of the decisions along the path starting
at the initial state and ending at a final state.

The definition of the states as well as the transition function will enforce both the mono-
tonicity constraints and the Erdös-Gallai constraints. Thus, the states of the dynamic pro-
gramming table correspond to 5-tuples (i, pi, di,βi, si). The meaning of reaching this state is
that so far we decided upon the degrees of nodes 1, 2, ..., i all of them are at least di (as we
enforce the monotonicity constraints by induction on the length of the path) and their sum
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is pi, and we also computed the degrees of nodes βi + 1,βi + 2, . . . , n which are the vertices
of degrees at most i, and their sum is si.

When we are at state (i, pi, di,βi, si) such that i < βi we should decide the value of di+1

and the value of βi+1. As mentioned above a feasible value of the pair (di+1,βi+1) has a
reward of f(di+1) + βi+1 · f(i + 1). If such a decision is feasible then it will results in a
transition to the state (i+ 1, pi + di+1, di+1,βi+1, si + (i+ 1) · βi+1).

It remains to define the set of pairs (di+1,βi+1) of non-negative integers for which the
decision is feasible. A pair (di+1,βi+1) is feasible for a given state (i, pi, di,βi, si) if all the
following conditions hold:

1. βi+1 ≥ i+ 1 - this condition means that the degree of a vertex will be defined at most
once (it is required as we determine the degrees of both a prefix and a suffix of the
vertices and we need this definition to be well-defined).

2. i+ 1 ≤ di+1 ≤ di - this constraint enforces the monotonicity conditions over the prefix
of the first i+ 1 vertices (note that di is defined in the definition of the state).

3. pi + di+1 + si + (i + 1) · βi+1 ≤ m - this condition will enforce that we can choose at
most m edges.

4. The (i+ 1)-th Erdös-Gallai constraint that can be stated as follows

pi + di+1 − (i+ 1) · i ≤ si + (i+ 1) · βi+1 + (βi+1 − i− 1) · (i+ 1).

The initial state of the dynamic programming is (0, 0, n, n, 0) and we would like to find a
path of feasible decisions with maximum total reward leading from the initial state to a final
state that is a state for which both i = βi and pi + si = m.

Observe that if the decision is feasible and leads to a state that has a path P to a final
state then the decisions that will correspond to the path P will not change the fact that the
degree sequence satisfies the (i+1)-th Erdös-Gallai constraint. This is so as the left hand side
will not change when we determine the degrees in the next stages, and the right hand side
will also not changed as all the degrees that we select in the following stages will be between
i+ 2 and di+1 so the minimum on the right hand side for the indices between i+ 2 and βi+1

will be i+ 1 as we assume in the last condition we checked for the feasibility of the decision.
Next we note that the number of states of the dynamic programming table is O(n3m2)

as there are O(n) options for i, O(m) options for pi, O(n) options for di, O(n) options for βi,
and O(m) options for si. Furthermore for each state there are O(n2) feasible decisions, and
the time for computing the maximum total reward of a subpath that starts at the given state
and ends at some final state is O(n2) (since given a value of βi+1 we can compute the upper
bound on di+1 resulting from all our constraints in time O(n)). Thus, the time complexity of
the algorithm is O(n5m2).

6 Convex functions and degree sequence polytopes

Here we consider optimization of convex functions over degree sequences. In fact, our results
hold for the more general problem of maximizing any convex function f : {0, 1, . . . ,m}n → R

which is not necessarily separable of the form f(d1, . . . , dn) =
∑n

i=1 fi(di) considered before.
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First we consider the case of multihypergraphs which turns out to be quite simple.

Theorem 6.1 If f is convex then there exists a multihypergraph H = [x, . . . , x], having m

identical edges x, which maximizes f(
∑

H), where x maximizes f(mx) over {0, 1}nk . So for

any fixed k the optimization problem over degree sequences can be solved in polynomial time.

On the other hand, for k variable the problem may need exponential time even for m = 1.

Proof. Assume f is convex and let Ĥ be an optimal multihypergraph. Let x1, . . . , xr in
{0, 1}nk be the distinct edges of Ĥ. Define an n × r matrix M := [x1, . . . , xr] and a function
g : Zr → R by g(y) := f(My), which is convex since f is. Consider the integer simplex
Y := {y ∈ Zr

+ : y1 + · · · + yr = m} and the auxiliary problem max{g(y) : y ∈ Y }. For each
y ∈ Y let H(y) := [x1, . . . , x1, . . . , xr, . . . , xr] be the multihypergraph consisting of yi copies
of xi. Permuting the columns of Ĥ we may assume that Ĥ = H(ŷ) for some ŷ ∈ Y .

Now, g is convex, so the auxiliary problem has an optimal solution which is a vertex of Y ,
namely, a multiple ỹ = m1i of a unit vector in Zr. It then follows that H̃ := H(ỹ) = [xi, . . . , xi]
is the desired optimal multihypergraph having a degree sequence which maximizes f , since

f

⎛

⎝

m
∑

j=1

H̃j

⎞

⎠ = f(Mỹ) = g(ỹ) ≥ g(ŷ) = f(Mŷ) = f

⎛

⎝

m
∑

j=1

Ĥj

⎞

⎠ .

For k fixed we can clearly find an x attaining max{f(mx) : x ∈ {0, 1}nk} in polynomial time.
Now consider the situation of k variable part of the input. Let m := 1. Then any function

f : {0, 1}n → R is convex so in order to solve max{f(x) : x ∈ {0, 1}nk} one needs to check the
value of f on each of the

(

n
k

)

points in {0, 1}nk and for k = ⌊n2 ⌋ this requires exponential time.

We continue with hypergraphs. We need to discuss the class of degree sequence polytopes.
The classical degree sequence polytope is the convex hull Dn

k := conv{
∑

H : H ⊆ {0, 1}nk} of
degree sequences of k-hypergraphs on [n] with unrestricted number of edges. For k = 2, that
is, graphs, these polytopes have been extensively studied, see [16] and the references therein.
The Erdös-Gallai theorem implies that Dn

2 is the set of points d ∈ Rn satisfying the system

∑

i∈S

di −
∑

i∈T

di ≤ |S|(n− 1− |T |) , S, T ⊆ [n] , S ∩ T = ∅ ,

and the vertices of Dn
2 were characterized in [8] as precisely the degree sequences of threshold

graphs. More recently, the polytopes Dn
k for k ≥ 3 were studied in [7, 12, 14], but neither a

complete inequality description nor a complete characterization of vertices is known.
We now go back to the situation when the number of edges m is prescribed. We define the

degree sequence polytope D
n,m
k as the convex hullDn,m

k := conv{
∑

H : H ⊆ {0, 1}nk , |H| = m}
of degree sequence of k-hypergraphs with m edges over [n]. A degree sequence is called
extremal if it is a vertex of this polytope. We note that when maximizing a convex function
over degree sequences there will always be an optimal solution which is extremal.

Again we restrict attention to graphs and use alternatively the interpretation of a graph as
G ⊆ {0, 1}n2 and G = ([n], E). The graph G is called a threshold graph if for some permutation
π of [n], each vertex π(i) is connected to either all or none of the vertices π(j), j < i. It is well
known that a graph G with degree sequence d =

∑

G is threshold if and only if N(i) ⊆ N [j]



9

whenever di ≤ dj, where N(i) := {j : {i, j} ∈ E} and N [i] := N(i) * {i} are the open and
closed neighborhoods of i respectively, see [13]. We now characterize the extremal degree
sequences of graphs with prescribed number of edges in analogy with the result of [8].

Theorem 6.2 The vertices of Dn,m
2 are the degree sequences of threshold graphs with m edges.

So for any convex function f : {0, 1, . . . ,m}n → R there is a threshold graph G maximizing

f(
∑

G) and providing an optimal solution to the optimization problem over degree sequences.

Proof. Suppose first that d is the degree sequence of a threshold graph with m edges. Then,
by the result of [8], it is a vertex of Dn

2 . Since d ∈ D
n,m
2 ⊆ Dn

2 , it is also a vertex of Dn,m
2 .

Conversely, consider any vertex d of Dn,m
2 . Let w ∈ Rn be such that wx is uniquely

maximized over Dn,m
2 at d. Perturbing w if necessary we may assume that w1, . . . , wn are

distinct. Let G = ([n], E) be a graph with d =
∑

G. We need to show that N(i) ⊆ N [j]
whenever di ≤ dj, which will imply that G is a threshold graph. Suppose on the contrary
that for some i ̸= j we have di ≤ dj but there is some k ∈ N(i) \N [j].

Suppose first di = dj and wi > wj. Then there must be also some l ∈ N(j) \N [i]. Then
the graph G′ obtained from G by adding edge {i, l} and dropping edge {j, l} has m edges and
w
∑

G′ = w
∑

G+ wi − wj > wd which is impossible.
Next, consider the case where di ≤ dj and wj > wi. Then the graph G′′ obtained from

G by adding {j, k} and dropping {i, k} has m edges and w
∑

G′′ = w
∑

G + wj − wi > wd

which is impossible again.
Thus, it remains to consider the case where di < dj and wi > wj . Let d′ ∈ Dn,m

2 be the
degree sequence obtained from d by setting d′i := dj , d′j := di, and d′t := dt for t ̸= i, j. Then
wd′ − wd = (wi − wj)(dj − di) > 0 which is a contradiction.

The second statement of the theorem now also follows, since any convex function attains
its maximum over a polytope at a vertex, which is the degree sequence of a threshold graph.

Two remarks are in order here. First, we note that if the function is not convex then,
even if it is separable, it may be that no threshold graph is a maximizer. To see this, let
m = n and define univariate functions f1 = · · · = fn by fi(2) = 1 and fi(t) = 0 for all t ̸= 2.
Then any graph G with m edges whose degree sequence d =

∑

G maximizes
∑n

i=1 fi(di) must
have degree sequence satisfying d1 = · · · = dn = 2 and so must be a (vertex) disjoint union of
circuits. For all n ≥ 4 any such graph is not threshold, since by definition any threshold graph
contains either an isolated vertex (of degree 0) or a dominating vertex (of degree n− 1 ≥ 3).

Second, given a convex function f , we do not know how to efficiently find a vertex d of
Dn,m

2 which maximizes f . Note that if we could find such a vertex d then, since the above
Theorem 6.2 guarantees that d must be the degree sequence of some threshold graph, we
could also find an optimal threshold graph G with

∑

G = d. Indeed, there must be some i

with either di = 0 or di = n− 1. We then define V ′ := [n] \ {i}. If di = 0 then we recursively
find a threshold graph G′ on V ′ with degree sequence d′ defined by d′i := di for all i ∈ V ′, and
add an isolated vertex i. If di = n − 1 we recursively find a threshold graph G′ on V ′ with
degree sequence d′ defined by d′i := di − 1 for all i ∈ V ′, and add a dominating vertex i.

We conclude this section by showing that we can use Theorem 6.2 to obtain a dynamic
programming algorithm for the optimization problem over degree sequences for any identical
univariate functions f1 = · · · = fn = f which are convex. Observe that the time complexity
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that is established in the next theorem is significantly lower than the one established for the
general case of (not necessarily convex) identical univariate functions in Theorem 1.2.

Theorem 6.3 For k = 2, that is, graphs, optimization over degree sequences can be done in

O(n2m) time for any n,m and any identical univariate convex functions f1 = · · · = fn.

Proof. We use the fact that the functions f1 = · · · = fn = f are identical to assume that an
optimal solution of our problem (which can be assumed to be a threshold graph by Theorem
6.2) satisfies that every vertex i is either adjacent to all vertices j such that j > i (in which
case we say that i is dominating) or it is not adjacent to any of those vertices (in which case
we say that i is isolating). Thus, the terms dominating and isolating refer to the induced
subgraph over the vertices with indices at least i.

Once again we use dynamic programming to find an optimal threshold graph for our
problem. There are n stages, and in stage i we decide if vertex i is dominating or isolating.
A state in this dynamic programming is a triple consisting of (i, ei, δi) where ei is the total
number of edges adjacent to at least one vertex in {1, 2, . . . , i}, and δi is the number of
dominating vertices among 1, 2, . . . , i. The decision that i + 1 is dominating means that its
degree will be δi+n− (i+1) as i+1 will be adjacent to all dominating vertices in 1, . . . , i and
to all vertices in i+2, . . . , n, and thus the reward of such a decision will be f(δi+n− (i+1))
and in this case we move to state (i + 1, δi + 1, ei + n − (i + 1)). The decision that i + 1 is
isolating means that its degree will be δi and thus the reward of such a decision will be f(δi)
and we will move to the state (i+ 1, δi, ei).

These decisions are feasible only when the third component is at most m (and the second
component is at most n), and otherwise we have only one option of deciding that the vertex
is isolated.

In the resulting dynamic programming we look for a maximum total reward path that
leads from the initial state of (0, 0, 0) to any of the final states defined as (n, δ,m) (choosing
the value of δ that maximizes the total reward of the path).

The time complexity of this algorithm is O(n2m) as there are O(n2m) states (since there
are O(n) options for i, O(n) options for δi, and O(m) options for ei) and the amount of work
for each state is O(1).

7 Shifted combinatorial optimization

Optimization over degree sequences can be viewed as a special case of the broad framework
of shifted combinatorial optimization recently introduced and investigated in [3, 6, 9, 11].

Standard combinatorial optimization is the following extensively studied problem (see [18]
for a detailed account of the literature and bibliography of thousands of articles on this).

(Standard) Combinatorial Optimization. Given S ⊆ {0, 1}n and w ∈ Rn, solve

max{ws : s ∈ S} . (1)

The complexity of this problem depends on the type and presentation of the defining set S.
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Shifted combinatorial optimization is a broad nonlinear extension of this problem, which
involves the choice of several feasible solutions from S at a time, defined as follows.

For a set S ⊆ Rn let Sm be the set of n × m matrices x having each column xj in S.
Call matrices x, y ∈ Rn×m equivalent and write x ∼ y if each row of x is a permutation of
the corresponding row of y. The shift of x ∈ Rn×m is the unique matrix x ∈ Rn×m satisfying
x ∼ x and x1 ≥ · · · ≥ xm. We can then define the following broad optimization framework.

Shifted Combinatorial Optimization. Given S ⊆ {0, 1}n and c ∈ Rn×m, solve

max{cx : x ∈ Sm} . (2)

This framework has a very broad expressive power and its polynomial time solvability
was so far established in the following situations. First, when S is presented by totally
unimodular inequalities, in particular when S is the set of matchings in a bipartite graph [6].
Second, when S is the set of independent sets in a matroid or the intersection of two so-called
strongly-base-orderable matroids [11]. Third, when S is any property defined by any bounded
monadic-second-order-logic formula over any graph of bounded tree-width [3]. And finally, a
study of approximation algorithms for this framework was very recently initiated in [9].

We claim that the optimization problem over degree sequences in multihypergraphs can be
formulated as the special shifted combinatorial optimization problem with S = {0, 1}nk . Then
multihypergraphs are matrices x ∈ Sm = ({0, 1}nk )

m with degree sequence
∑

x =
∑m

j=1 x
j .

Now, given functions fi : {0, 1, . . . ,m} → R, define c ∈ Rn×m by ci,j := fi(j) − fi(j − 1)
for all i and j. Then for every x ∈ Sm we have cx =

∑n
i=1 fi(di)−

∑n
i=1 fi(0) where d =

∑

x.
Therefore the multihypergraph x maximizes cx if and only if it maximizes

∑n
i=1 fi(di).

Next, for S ⊆ {0, 1}n and positive integers m,u let Sm
u be the set of matrices x in Sm

such that for each s ∈ S there are at most u columns of x which are equal to s. The bounded
shifted combinatorial optimization problem is then max{cx : x ∈ Sm

u }. Then, defining c from
the functions fi as above, the degree sequence problem for hypergraphs can be formulated as
a bounded shifted combinatorial optimization problem with S = {0, 1}nk as before and u = 1.

Thus, our results in this paper for hypergraphs can be regarded as a first step in the
development of a theory of bounded shifted combinatorial optimization.
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