
McMaster University

Advanced Optimization Laboratory

Title:

Algorithms and Tests for the Colourful Feasibility
Problem

Authors:

Antoine Deza, Sui Huang, Tamon Stephen and Tamás Terlaky

AdvOl-Report No. 2005/20

November 2005, revised November 2007, Hamilton, Ontario, Canada

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY
PROBLEM

ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

Abstract. We study a colourful generalization of the linear programming feasibility prob-
lem, comparing the algorithms introduced by Bárány and Onn with new methods. This is
a challenging problem on the borderline of tractability, its complexity is an open question.
We perform benchmarking on generic and ill-conditioned problems, as well as recently in-
troduced highly structured problems. We show that some algorithms can lead to cycling or
slow convergence and we provide extensive numerical experiments which show that others
perform much better than predicted by complexity arguments. We conclude that the most
efficient method is a proposed multi-update algorithm.

1. Introduction

Given colourful sets S1, . . . , Sd+1 of points in Rd and a point p in Rd, the colourful linear
programming problem is to express p as a convex combination of points x1, . . . , xd+1 with
xi ∈ Si for each i. This problem was presented by Bárány and Onn in 1997 [BO97b], it is still
not known if a polynomial-time algorithm for the problem exists. The monochrome version
of this problem, expressing p as a convex combination of points in a set S, is a traditional
linear programming feasibility problem.

In this paper, we study algorithms for colourful linear programming with a core condition
from an experimental point of view. We learn several things. First, in our experience
this problem is easy – we expend more effort to generate difficult examples than to solve
them. Second, while the classical algorithms for this problem already perform quite well,
we introduce modifications that achieve a substantial improvement in practical performance.
Third, we construct examples where ill-conditioning leads to slow convergence for the some
otherwise very effective algorithms. And finally, we remark that a simple greedy heuristic
provides competitive results in practice but we find a case where it fails to solve the problem
at all. Additionally we provide benchmarking that we hope will encourage research on this
attractive problem.

2. Definitions and Background

We call a system of d + 1 sets of d + 1 points a configuration, and often denote it as
S = {S1, . . . , Sd+1}. Such configurations are the simplest non-degenerate cases of colourful

linear programming. We define the core of a configuration to be
⋂d+1

i=1 conv(Si). In this
paper we consider the colourful feasibility problem of expressing a given p in the interior
of the core as a colourful convex combination of points in the configuration. By Bárány’s
colourful Carathéodory theorem [Bár82], a solution is guaranteed to exist, and the problem
is to exhibit one. This problem is described in [BO97b] as “an outstanding problem on the
border line between tractable and intractable problems”.

Several close relatives of the colourful feasibility problem are known to be difficult. For
example, the case where we have d colours in Rd and no restriction on the size of the sets has

2000 Mathematics Subject Classification. 52C45, 68W40, 90C60, 68Q25.
1

2 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

been shown to be strongly NP-complete through a reduction of 3-SAT. We refer to [BO97b]
for more details.

In [Bár82], Bárány proposed a finite algorithm A1 to solve colourful feasibility, and in
[BO97b] Bárány and Onn analyzed the complexity of A1 and a second algorithm A2. (See
Section 3 for a detailed description of these and other algorithms.) Both these algorithms
are essentially geometric, and the complexity guarantees depend crucially on having the
point p in the interior of the core. In effect, the distance between p and the boundary of
the core can be considered as a measure of the conditioning of the problem. Thus for a
configuration S we define ρ to be the radius of the largest ball around p that is contained
in the core. The results for A1 and A2 are effectively that they are polynomial in d and
1/ρ. While this is not polynomial in the input, it suggests that a polynomial algorithm may
be possible. We remark that for configurations of d + 1 points in d + 1 colours on the unit
sphere Sd ⊆ Rd, ρ will be small even if the problem has a favourable special structure, and
quite small otherwise.

It is helpful to preprocess the problem by translating the point p to be the vector ~0 in
Rd. If ~0 is a point in one of the Si’s, then the solution to the colourful feasibility problem
is trivial. Otherwise, we can also scale the points of the Si’s so that they lie on the unit
sphere Sd. The coordinates in any resulting convex combination can then be unscaled as a
post-processing step.

We remark that restricting the sets to have size d+ 1 is not a burden since, given a larger
set, solving a monochrome linear feasibility problem allows us to efficiently find a basis of
size d+ 1 with ~0 in its convex hull.

The colourful feasibility problem models a data mining situation where we want to se-
lect a set of points that is both diverse, in the sense that it includes representatives from
predetermined classes (colours), and representative, in the sense that the selected points
surround a specified point common to all the classes [Lu06]. Application of this problem to
combinatorics are discussed in [BO97a].

3. Seven Algorithms

In this paper we consider the theoretical and practical performance of seven algorithms
for finding a colourful basis. The algorithms considered are the algorithms of Bárány A1
and of Bárány and Onn A2, modifications of these algorithms which update multiple colours
at each stage, which we will call A3 and A4 and a hybrid A5 of these designed to take
advantage of the strengths of both algorithms. For purposes of comparison, we also consider
two simple approaches that perform well under certain circumstances: a greedy heuristic
where we choose the adjacent simplex of maximum volume A6 and a random sampling
approach A7. All our implementations are initialized with the first points from each colour.
Following are descriptions of the algorithms, see [Hua] for MATLAB implementations of
each. Besides A7, they are implemented as pivoting algorithms with the respective pivot
selection rule.

3.1. Bárány’s Algorithm A1. We begin with the algorithm proposed by Bárány [Bár82],
which is a pivoting algorithm. It begins with say a random colourful simplex ∆. The point
x nearest to ~0 in ∆ is computed. If x 6= ~0, then x must lie on at least one facet of ∆.
Consider the colour i of the vertex of ∆ that is not on this facet. Look for the point t of
colour i minimizing the inner product 〈t, x〉. Then we replace the point of colour i from ∆
with the point t to get a new simplex. The algorithm then repeats beginning with the new
simplex.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 3

The convergence of this algorithm relies on the fact that ~0 is in the core of the configuration.
For this reason the affine hyperplane perpendicular to the vector x cannot separate ~0 from
the points of colour i. Thus the next simplex will have a point closer to ~0 than ∆ did,
and the algorithm will converge in finitely many steps. If, additionally, the core has radius
at least ρ around ~0, then there is a guarantee a given step will decrease the squared norm
of the nearest point by at least a factor of (1 − ρ2/4). Using this, it is possible to show
that A1 will approach the solution in O(1/ρ2) iterations. Since an iteration can be done in
polynomial time, this proves that A1 runs in time polynomial in the input data and 1/ρ.
Consult [BO97b] for details and a proof.

We note that the complexity of a single iteration is dominated by the cost of the nearest
point subroutine. This can be solved as a continuous convex quadratic optimization problem,
but involves numerical issues: It can be solved to less or greater precision, either risking
numerical error or increasing the running time. For the purposes of our benchmarking, we
used the MATLAB built-in quadprog() which gave fairly good results, see Section 5.2.

3.2. Bárány and Onn’s Algorithm A2. The reliance of A1 on nearest point calculations
is a disadvantage. Partly motivated by this, Bárány and Onn proposed an alternate algorithm
for the colourful feasibility problem whose calculations involve only linear algebra. This
algorithm, A2, is described in [BO97b].

The key idea is to replace the closest point x to ~0 on the simplex ∆ by a point y on the
boundary of ∆ that can be computed algebraically. The initial choice of y could be one of
the vertices of the initial simplex. In subsequent iterations, a colour j corresponding to a zero
coefficient in y is chosen. An improving vertex v of colour j is found, and ynew is updated by
projecting ~0 onto the line segment between y and v and finding where the resulting vector
enters the new simplex. As with A1, this algorithm takes O(1/ρ2) iterations, and hence is
polynomial in the input data and 1/ρ, see [BO97b].

The implementation of A2 proposed in [BO97b] takes time Θ(d4) for a single iteration.

The bottleneck is computing ynew, which is the intersection of the line segment from ~0 to a
point p and the new simplex. In fact we observe that this can be done in time O(d3). First,
compute the defining equations for the simplex Aynew ≥ b by inverting the homogenized
matrix of the vertices. We know the intersection point will be of the form ynew = αp. We
can substitute this into the above inequalities to get α(Ap) ≥ b and simply take α to be the
maximum value of bi/Aip for i = 1, 2, . . . , d+ 1. This is implemented in [Hua].

As noted by Maurice Queyranne, it is possible to modify A2 to compute the nearest point
on the simplex using Wolfe’s algorithm for finding the nearest point on a polytope [Wol76].
While it does not have a polynomial time guarantee, it may work well for this problem. Like
A2, Wolfe’s algorithm uses simple linear algebra to pivot through faces; it could be adapted
to use ynew as a warm start.

3.3. Multi-update Bárány A3. We propose the following modification of A1: if it hap-
pens that the nearest point x to ~0 of the current simplex ∆ lies on a low-dimensional face
of ∆ - i.e., on more than one facet - then we update every colour that is not a vertex of
that face. After finding each new point, we replace x by xnew, the projection of ~0 onto the
line segment from x to the vertex we are adding to the simplex. The advantage of this
new algorithm, which we call A3, is that when possible it updates several colours without
recomputing a nearest point.

Since this algorithm makes at least as much progress as A1 at each iteration, we get
convergence in at most the same number of iterations. A given iteration may take longer,
since it has to update multiple points. However, aside from the nearest point calculation,

4 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

all steps in an iteration of A1 can be performed in O(d2) arithmetic operations. Hence the
additional work per iteration of A3 is O(d3), and the bottleneck remains the single nearest
point calculation.

3.4. Multi-update Bárány and Onn A4. Similarly, we can adjust algorithm A2 to pivot
multiple colours when y lies on a low-dimensional face. As in A3 we update y by setting
ynew to the projection of ~0 onto the line from y to the new vertex. This is faster than the
computation of y from A2 at the end of the iteration, which remains the bottleneck. We
call this algorithm A4. It is particularly useful at the start of the algorithm since the initial
point y is a vertex of ∆. This algorithm will take no more iterations than A2, and each
iteration costs at most a constant factor more than an iteration of A2.

3.5. Hybrid A5. In Section 5 we describe a situation where A2 and A4 are slow because
they repeatedly return to the same simplex, see the example in Section 6.1. A practical
solution to this is to run A4, but use a computationally heavy step from A3 if we detect
that A4 is returning to the same simplex. We implemented such a hybrid algorithm A5.

3.6. Maximum Volume A6. We also considered the performance of some greedy heuris-
tics. The most effective of these was to pivot from ∆ to an adjacent simplex of maximum
volume given that the pivoting hyperplane separates ∆ from ~0. This heuristic, which we call
A6, uses simpler linear algebra than A2, and by taking large simplices often gets to ~0 in a
small number of steps. We can perform an iteration of this algorithm in O(d4) time.

3.7. Random Sampling A7. Finally, we remark on a very simple guess and check algo-
rithm where we sample simplices at random and check to see if they contain ~0. Intuitively
we would not expect such an algorithm to work well. However, as discussed in [DHST06]
solutions to a given colourful feasibility problem may not be all that rare, and in some cases
can be quite frequent. Since guessing and checking are relatively fast operations, it is worth
considering the possibility that this naive algorithm may perform well in special cases or low
dimension. We call this algorithm A7.

One attractive feature of A7 is that the cost of an iteration is low – we only have to
generate a random simplex and then test if it contains ~0. The test can be done in O(d3)
time by solving a linear system.

4. Random, Ill-conditioned and Extremal Problems

To better understand how various algorithms perform in practice, we produced a test suite
of challenging colourful feasibility problems, which includes unstructured random problems,
ill-conditioned problems and problems with a restricted number of solutions. In this section
we describe three types of colourful feasibility problems that we consider when evaluating
the practical performance of an algorithm. See [Hua] for a MATLAB implementation of each
of these problem generators.

4.1. Unstructured Random Problems. The first class of problems we consider are un-
structured random problems. We take d+ 1 points in each of d+ 1 colours on Sd. The only
restriction we require is that ~0 is in the core. This is achieved by taking the last point to
be a random convex combination of the antipodes on Sd of the first d points. We call this
generator G1.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 5

4.2. Ill-conditioned Random Problems. Next, we consider ill-conditioned problems. We
place d points of a given colour on the spherical cap around the point (0, 0, . . . , 0, 1) and the
final point of that colour in the opposite spherical cap, again as a convex combination of the
antipodes. The maximum angle between a chosen vector and the final coordinate axis is a
parameter, and points are concentrated towards the centre rather than uniformly distributed
on the cap. Since the points all lie in a tube around the final coordinate axis, we call these
tube generators. We implemented two tube generators: G2 randomly places either 1 or d
points of colour i on the positive side of the axis, while G3 always places d points of colour
i on the positive side of the axis.

4.3. Problems with a Restricted Number of Solutions. Finally, we consider problems
where we control the number of colourful simplices containing ~0. The paper [DHST06]
provides new bounds for the number of possible solutions to a colourful feasibility problem
with ~0 in the interior of the core. It turns out that the number of simplices containing ~0 in
dimension d can be as low as quadratic in d, but not lower, see [BM07] and [ST05], or as
high as dd+1 + 1 (with ρ > 0), which is more than one third of the total number of simplices.
Constructions are given for colourful feasibility problems attaining both these values.

The probability that a simplex generated by d+1 points chosen randomly on Sd contains ~0
is 1/2d, see for example [WW01]. Thus in a uniformly generated random problem of the type
generated by G1, we would expect about 1/2d of the (d+1)d+1 colourful simplices to contain
~0. This is not a large fraction, but in the context of an effective pivoting algorithm such as
A1 which may pivot several neighbours to a given solution, and pivot several neighbours of
the first neighbour onto it, etc., we can entertain the idea that for a random configuration
most simplices are close to a solution. See Section 6.4 for further discussion.

We might expect that the difficulty of a colourful feasibility problem increases as the num-
ber of solutions, i.e. simplices containing ~0, decreases, so we wrote three problem generators
based on the constructions in [DHST06]. The first, G4 generates perturbed versions of the
configuration from [DHST06] with many solutions. These problems have dd+1 + 1 of the

(d + 1)d+1 simplices containing ~0, many more than random configurations, and we expect
them to be quite easy. The second, G5, generates configurations where one point of each
colour is close to each vertex of a regular simplex on Sd. There are d! solutions corresponding
to picking a different colour from each vertex, this is still much less than the (d + 1)d+1/2d

expected in a random configuration. Finally, we have G6, which generates perturbed ver-
sions of the configuration from [DHST06] which has only d2 + 1 solutions. The generators
G4, G5 and G6 randomly permute the order of the points that appear within each colour.

All these problems are ill-conditioned in the sense that points are clustered closely together.
Also ρ will be quite small for G4 and G6, although the construction G5 maximizes ρ for
configurations on Sd, with ρ = 1/d.

5. Benchmarking and Results

In this section, we describe the results of computational experiments in which we run the
colourful feasibility algorithms against our problem generators. We focus on the number
of iterations that an algorithm takes to find a solution, but in Section 5.2 we also include
information about the cost of iterations. The two particularly difficult, but fragile, examples
of Sections 6.1 and 6.2 are not included in these results.

5.1. Iteration Counts. For each type of problem we ran tests of the algorithms in dimen-
sions 3 × 2n for n = 0, 1, 2, 3, 4, 5, 6, 7. Dimension 3 is our starting point since the seven
algorithms degenerate to three simple and effective algorithms in dimension 2. We use the

6 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

factor 2 increase to sample higher dimensions with less frequency as we get higher. We
believe this yields a reasonable sample of low, intermediate and high dimensional problems.

Note that a colourful feasibility problem instance in dimension d consists of (d+1)2 points
in dimension d. Thus the size of the input is cubic in d. At present it is logistically difficult
to generate and store a colourful feasibility problem in dimension d = 1000. After dimension
100, it also becomes increasingly difficult to cope with numerical errors, especially for the
algorithms that include nearest point calculations, namely A1, A3 and A5. For this reason
we do not include results for these algorithms beyond d = 96 for except for the relatively
well-conditioned G1 problems where we stopped at d = 192. As one would expect, the
guess-and-check algorithm A7 performs badly as d increases, except on problems from the
G4 generator which have an abundance of solutions. We only include results from the A7
algorithm when they can be completed in a reasonable amount of time.

The results of our computational experiments are presented in the graphs below and the
tables in Appendix C. Each graph presents results for a single random generator on a log-
log scale with the average iteration count of each algorithm plotted against the dimension.
Additionally, the tables contain the values of the largest iteration count observed in each
type of trial; these show similar trends to the averages, although we notice that A2 and
A4 sometimes perform substantially worse than the average, especially in the presence of
ill-conditioning. The reasons for this are discussed in Section 6.2.

For each generator at d = 3 we sampled 100,000 problems, at d = 6 and d = 12 we sampled
10,000 problems, at d = 24 and d = 48 we sampled 1,000 problems and finally for d ≥ 96 we
sampled 100 problems. Because of the varying sample sizes, it may not be entirely fair to
compare the maxima listed in Appendix C between dimensions. The results are plotted on
as log-log graphs in Figures 1–6. We remark that polynomials appear asymptotically linear
in log-log plots, with the slope of the asymptote being the exponent of the leading term of
the polynomial and the y-intercept of the asymptote representing the lead coefficient.

In Figure 1 we see that A1 and A2 appear to be taking a polynomial number of iterations
to solution, while A6 and A7 do not appear to be polynomial. Since each algorithm takes
a polynomial time per iteration, the graphs of time versus dimension show similar trends.

For tube experiments G2 and G3, we used an angle parameter of π/6, that is, all the
vectors in the configuration made an angle of at most π/6 with the x-axis.

The tube experiments summarized in Figures 2 and 3 show the impact of ill-conditioning
on all the algorithms. For A1, A3, A5 and A6, convergence is slightly slower and numerical
errors become more common. With these algorithms, our experiments began to crash at di-
mension 192. By contrast for the better conditioned problems from G1, the three algorithms
with minimum distance calculations crashed only at dimension 384 and A6 would in any
case take too long on problems of this size. Nevertheless, these algorithms remain effective
at d = 96.

The algorithms A2 and A4 are more robust in the sense that they are not as prone to
crashes due to numerical errors. This is the advantage of relying entirely on straightforward
linear algebra computations rather than considering nearest points or volumes. At the same
time, they converge much more slowly due to problems of the type described in Section 6.2
and Appendix 6.2.

If we decrease the angle parameter which controls the width of the tube and hence the
conditioning, all the algorithms become less stable numerically and experience a degradation
in performance. In the cases of A2 and A4 they become substantially slower.

We comment that the A7 algorithm performs about the same on G2 problems as it did on
G1 problems. This indicates that G2 problems typically have a similar number of solutions
to G1 problems. As one would expect, solutions to the one-sided tube problems generated

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 7

3 6 12 24 48 96 192
0

1

2

3

4

5

6

7

8

9

10

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for random problems

A1
A2
A3
A4
A5
A6
A7

Figure 1. Results for G1.

3 6 12 24 48 96 192
0

1

2

3

4

5

6

7

8

9

10

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for basic tube problems

A1
A2
A3
A4
A5
A6
A7

Figure 2. Results for G2.

8 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

3 6 12 24 48 96 192
0

1

2

3

4

5

6

7

8

9

10

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for one−sided tube problems

A1
A2
A3
A4
A5
A6
A7

Figure 3. Results for G3.

by G3 are rarer than solutions to G1 and G2 problems since the most of the points are
clustered on one side. Hence A7 performs much worse on this type of problem.

The problems with many solutions produced by G4 are solved very quickly by all the
algorithms, as illustrated in Figure 4. In this case the random sampling algorithm A7 offers
excellent performance. With the abundance of solutions, most of the algorithms solve such
problems in an expected constant number of iterations. The exception is A2 which needs
Θ(d) iterations at the start to unwind the nearest point substitute y from a vertex to an
interior point on a facet. Since all the algorithms begin by checking the feasibility of the
initial simplex, the G4 problems are often solved in 0 iterations.

For the simplex structured problems of G5, we see all the algorithms except A7 perform
very well, despite the relative scarcity of solutions. We see that the other algorithms have
exactly the proper response to this structure – they systematically take points near vertices
that are not part of the current set. In the case of A1, a new vertex of the simplex will
be added at each step to give convergence in at most d iterations, for A2 it takes one pass
through the d+ 1 colours, and for the multi-update algorithms A3, A4 and A5 one or two
passes through the colours. Algorithm A6 also solves these problems in a reasonable number
of iterations.

Finally, we see that the problems from G6 where solutions are scarce are indeed more
difficult than random problems, but that, except for the A7 algorithm, the impact on al-
gorithmic performance is mild. See Figure 6. Curiously, the G6 problems are the most
difficult problems for the A1 algorithm. The multi-update algorithms A3, A4 and A5
perform extremely well.

5.2. Cost per Iteration. In Figure 7 we present the average iteration times observed for
all seven algorithms on problems from the G1 generator. The raw data for this graph is in

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 9

3 6 12 24 48 96 192 384
−1

0

1

2

3

4

5

6

7

8

9

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for G4 problems

A1
A2
A3
A4
A5
A6
A7

Figure 4. Results for G4.

3 6 12 24 48 96 192
−1

0

1

2

3

4

5

6

7

8

9

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for G5 problems

A1
A2
A3
A4
A5
A6
A7

Figure 5. Results for G5.

10 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

3 6 12 24 48 96 192
0

1

2

3

4

5

6

7

8

9

10

Dimension (log scale)

lo
g(

ite
ra

tio
n

co
un

t)

Average iteration count vs. dimension for G6 problems

A1
A2
A3
A4
A5
A6
A7

Figure 6. Results for G6.

Appendix D. We comment that the average time to complete an iteration does not change
significantly with the problem type, so we have not included the similar graphs for other
generators. The data shows that in our implementation of these algorithms, the average time
for an iteration is never very large. For the slowest algorithms in the highest dimensions the
average iteration took less than 2 seconds.

We see some interesting trends in the graphs. In low dimensions all the iteration times are
very fast and are presumably dominated by fixed startup costs. As the dimension increases,
we begin to see the asymptotic behaviour. The algebraic algorithms A2 and A4 show the
expected Θ(d3) behaviour, which appears linear in the log-log plot. Asymptotically, the
average time for an iteration of A4 is about 10 times longer for an iteration of A2.

The algorithms A1 and A3, which depend on a minimum distance calculation, take longer
on average to complete an iteration than A4. The extra cost for the multiple updates in
A3 is relatively small. However, the asymptotic slope of these lines appear higher than for
A2, which means that the nearest point calculations are causing the iterations to take time
Ω(d3). The algorithm A6 has iteration times not much worse than A2 in low dimension,
but its asymptotics look close to O(d4) as suggested in Section 3.6. Algorithm A7 exhibits
Θ(d3) iteration time and is asymptotically about twice as fast on average per iteration than
A2.

Unlike the other algorithms, the average iteration time for A5 will be substantially affected
by the conditioning of the problem. Using the well-conditioned G1 problems, A5 usually
degenerates to A4 and has a very similar average iteration time. As the problems become
more ill-conditioned, A5 will begin to use A3 steps as well, and the average iteration time
will increase towards the average iteration time for A3.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 11

3 6 12 24 48 96 192 384
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Dimension (log scale)

lo
g(

tim
e

pe
r i

te
ra

tio
n)

Average time per iteration vs. dimension for random problems

A1
A2
A3
A4
A5
A6
A7

Figure 7. Average iteration time of the algorithms.

6. Discussion and Worst-case Constructions

Our experiments reveal several features of colourful feasibility algorithms. After consider-
able searching, we found a problem instance which caused A6 to cycle. We also found that
A2 and A4 can converge extremely slowly in the face of ill-conditioning although A1 and
A3 continue to perform reasonably well on the same examples. We conclude that computa-
tionally the best algorithms are the multi-update variants and remark that these tightened
algorithms do yield substantial gains over the originals.

6.1. A Cycling Example for A6 in Dimension 4. In Appendix A we exhibit an example
in dimension 4 for which the maximum volume heuristic cycles. Since this example shows
that A6 can cycle, it is remarkable that it happens so rarely. It did not occur in the entire
test suite of Section 5. We were unable to find any examples of cycling in dimension 3 or
any examples of cycling in dimension 4 with cycle length shorter than 6. Higher dimensions
and longer cycle lengths do occur.

One explanation for the results is that as one might expect, A6 is an effective heuristic
in a typical situation. The distinguishing feature of the few bad examples is that the points
are placed in such a way that the simplices cluster into a few groups of similar shape and
volume. The heuristic of taking the maximum volume is then not very helpful in choosing
promising simplices. We note that this example is solved easily by the other algorithms.

6.2. Flip-flopping During Convergence for A2: 40,847 Iterations in Dimension
3. We constructed an example of a colourful feasibility problem in dimension 3 that takes
40,847 iterations to solution using a basic implementation of A2. The exact points we used
are contained in Appendix B. The algorithm is initialized with the simplex that uses the
first point of each colour. At the fifth iteration, the algorithm reaches a situation where

12 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

the current point y lies on a facet F of colours 2, 3 and 4 very close to ~0. Using this point
the algorithm will pick the point of colour 1 that has minimum dot product with y. The
second and third points of colour 1 lie almost in the directions of y and −y, however neither
of these forms a simplex with F containing ~0. In fact the fourth point of colour 1 does
form a simplex containing ~0 with F , but it is nearly orthogonal to y. As a result, after two
iterations, A2 returns to the same simplex. The point y will be recomputed at each step,
and is slightly closer to ~0 when the algorithm returns to the previous simplex. However, the
improvement is quite small. Of course ρ is also very small, so this is consistent with the
performance guarantee described in Section 3.2. The algorithm then proceeds to return to
the same simplex more than 20,000 times, with an incremental improvement to y at each
iteration before finally taking the fourth point of colour 1 and terminating.

As one would expect with a very ill-conditioned problem, this example is numerically
fragile – the current version of our code normalizes the coordinates before starting and does
not suffer the same fate. However bad behaviour is fairly typical. The tube generator for
ill-conditioned problems in [Hua] produces problems whose ill-conditioning depends on a
parameter defining the width of the tube. As the width decreases, we get an increasing
number of cases where A2 and A4 take enormous numbers of iterations.

We remark that, in contrast, A1 never returns to the same simplex, so it cannot suffer
from this type of flip-flopping. Indeed in dimension 3 it could do no worse than visiting
all 44 = 256 simplices. At least 10 of these must contain ~0, see [BM07], so the algorithm
must terminate in at most 246 iterations. It is quite hard to see how this limit could be
approached. The authors wonder if a Klee-Minty-like example, see [KM72], of worst-case
behaviour for Bárány’s pivoting algorithm could be constructed.

6.3. Advantages of Multiple Updates and Initialization. The multi-update algo-
rithms A3 and A4 do provide substantial gains over their single update counterparts, A1
and A2. In the case of A3, we get a large reduction in iteration count at very little cost in
terms of iteration time. In our benchmarking experiments, this produced times that were
competitive with A2 and much better than A1. The gains for A4 relative to A2 are less im-
pressive. In our benchmarking experiments, A4 consistently averaged a 10% to 40% savings
in total time to solution.

In fact, A2 is not as well suited as A1 to take advantage of multiple updates. The point
y close to ~0 computed by A2 will almost always lie in the interior of a facet of ∆, meaning
that A2 will only have a single candidate colour to pivot. In contrast, in high dimension, the
closest point x to ~0 will often lie on a relatively low dimensional face of ∆, allowing multiple
updates throughout the algorithm.

One difficulty for A2 is that it begins with y at a vertex. In a normal situation, the first
d steps of A2 will each increase the dimension of the smallest face containing y by one until
y lies in the interior of a facet, without necessarily yielding a much better current simplex.
The multi-update A4 does this all in the first iteration in less time than it takes A2 to do
d steps.

We have not discussed the effects of the initial simplex in this paper, but we can employ
various heuristics to choose a good initial simplex. A few of these are implemented in [Hua].
We found that the most useful initialization heuristic was to run the first iteration of A4.
This runs in O(d3) time and improves the subsequent iteration counts of the algorithms,
with the obvious exception of A7. Even A4 experiences a reduced iteration count, since the
point y found by the initialization is not passed to the algorithm.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 13

6.4. Theoretical Complexity of the Algorithms. In Section 3, we remarked that Bárány
and Onn proved a worst-case bound for A1 and A2 of O(1/ρ2) iterations up to numerical
considerations and we improved their iteration time for A2 from O(d4) to O(d3). We also
mentioned that we do not expect the multi-update and hybrid algorithms to improve the
theoretical bounds. From the example of Section 6.1, we see that A6 is not guaranteed to
converge. The expected running time of A7 is 1 over the probability that random simplex
contains ~0, i.e. around 2d for random problems, and as bad as (d + 1)d+1/(d2 + 1) for the
type of problems generated by G6.

The poor performance of A2 on ill-conditioned problems and examples like that of Sec-
tion 6.2 confirm the worst-case predictions of Bárány and Onn’s analysis. On the other hand,
we did not see this type of behaviour for A1, and it is hard to see how it could occur.

The model proposed in Section 4.3 is that a pure pivoting algorithm such as A1, defines a
set of rooted trees on the (d+ 1)d+1 simplices. Each simplex which contains ~0 is the root of
a tree, and we draw an edge between the vertices representing simplices ∆1 and ∆2 if when
A1 encounters ∆1 it pivots to ∆2. Then the worst performance of the algorithm in terms
of the number of iterations would be the height of the highest tree. A smart algorithm will
produce short trees by pivoting several simplices to a given simplex at a lower level.

Consider a situation where trees have a constant expansion factor k near the base, that
is, low level vertices are connected to roughly k vertices in the level above. The number
of trees is p(d + 1)d+1 where p is the probability that a simplex contains ~0. If the trees
expand up to height h, each tree will contain on the order of kh vertices. Then we must have
khp(d+ 1)d+1 ≤ (d+ 1)d+1, the total number of vertices. Rearranging, we get h ≤ − logk(p).
This expression predicts the average iteration count for A1 to grow linearly for G1 problems,
to be constant for G4 problems and to grow at Θ(d log d) for G6 problems. All of these
match very well with our observed results. The G5 problems are predicted to be more
difficult than they are observed to be, but that is not surprising given their simple structure.

7. Summary and Future Work

Despite the examples of Sections 6.1 and 6.2, the results presented in Section 5 show that,
except for A7 and to a lesser degree A6, all the algorithms did a good job of solving all the
problems. We did find that the methods which include nearest point calculations were more
vulnerable to numerical errors than A2 and A4, since our implementations began to crash
once we got past d = 100, especially on ill-conditioned problems. For the most part, the
reduced iteration counts of the nearest point algorithms do not offset the extra time spent
per iteration compared to A2 and A4. In some cases of extreme ill-conditioning, such as in
Section 6.2, A2 and A4 will take many additional iterations and be much slower compared
to the nearest point algorithms. In this situation either a hybrid algorithm such as A5, or
the basic A1 or A3 would work better.

We had hoped that the hybrid algorithm A5 would offer the benefits of A4, namely
speed and robustness in high dimensions, while stopping long periods of flip-flopping from
occurring. This did happen to a degree, but in our benchmarking experiments the net time
savings were negligible, while A5 retained A3’s tendency to crash due to numerical errors
in high dimension.

We finish by returning to the motivating question of Bárány and Onn: Is there a polyno-
mial time algorithm for colourful feasibility? By improving the implementation of A2, we
have improved the worst case for this algorithm from O(d4/ρ2) to O(d3/ρ2), however the
dependence on ρ has not improved. Indeed our experiments give strong evidence that the
analysis for A2 is tight.

14 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

The situation for A1 is less clear. We do not see the same bad behaviour with ill-
conditioned problems that we found for A2, so it is possible that a better guarantee exists
for this algorithm. In light of the model suggested in Section 6.4 it is quite difficult to see
how to construct a Klee-Minty-like bad case for A1 as discussed in Section 6.2. We view
this as an appealing challenge.

8. Acknowledgments

We thank the referees for helpful comments and Zhaosong Lu for suggesting data mining
as an application in Section 2. This research was supported by NSERC Discovery grants
for the four authors, by the Canada Research Chair program for the first and last authors
and by a MITACS grant for the second and third authors. The third author worked on
this project as part of the Discrete Optimization project of the IMO at the University of
Magdeburg.

Appendix A. Example in dimension 4 where A6 cycles

This example consists of 5 points in each of the 5 colours in R4. The points are presented
in Table 1. They are grouped by colour, with the rows representing x, y, z and w coordinates,
respectively.

Red points
7/52 1/89 -1/60 -1/28 4/127
1/176 -8/65 5/49 6/35 9/118
4/29 1/961 -8/191 1/40 -1/75

−
√

4238906047
66352

√
30434652805951

5559385

√
11360296502737439

107254140
−
√

69789743
31640

−7
√

25600756871
1123950

Green points
3/85 -5/71 8/45 3/88 -1/114
-1/67 1/10 -38/155 -2/131 -24/185
1/173 -2/101 1/95 3/53 7/85√

29008089867051134
170445655

−
√

5063381959
71710

2
√

159502559
26505

5
√

14863381455
610984

√
125498719055

358530

Blue points
-3/77 4/141 3/22 16/111 -3/46
-3/20 -4/63 -3/17 5/29 3/47
-2/71 -3/173 -5/79 -1/210 1/33

−
√

470161115387
694309

−8
√

122080034994545
88619769

−
√

826050579
29546

−
√

48208184671
225330

√
5043188147

71346

Tan points
1/59 6/151 8/45 -3/29 11/76
1/29 -1/122 -7/32 4/43 -1/8
3/56 1/536 8/97 -1/14 9/59

25
√

14625287
95816

√
554855708771634695

745501496

√
17827555751

139680
−
√

297327743
17458

√
75612155
8968

White points
1/167 3/43 11/52 -19/65 -3/100
1/241 -1/244 -5/134 2/129 1/62
1/53 2/9 13/142 1/4386 -4/73

−5
√

1201121068645021462891
173320847963

−
√

8432767415
94428

−
√

57852799351
247364

−
√

74312211919
285090

√
50998516979

226300

Table 1. Coordinates of points of an example where A6 cycles in dimension 4.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 15

The points obtained were initially found as floating point numbers, we rounded them to
rational numbers and verified the cycling with rational arithmetic.

The initial simplex is taken to be (1,1,1,1,1), i.e., the first point of each colour. The algo-
rithm proceeds to visit simplices (1,1,4,1,1), (3,1,4,1,1), (3,1,4,3,1), (3,1,1,3,1) and (1,1,1,3,1)
before returning to the original simplex and repeating. At steps one, three and five, there
are two candidate colours for pivoting, the candidates that are not chosen for pivoting are
1, 3 and 4 respectively. In the even numbered steps there is a single candidate colour for
pivoting.

We noted that 170 of the 3125 colourful simplices in this example contain zero, slightly
less that the expected 3125/16 ≈ 195. The average volume of a zero containing simplex
was about 0.000427, whereas the average volume of a not zero containing simplex was about
0.000201. All the simplices were quite small, the largest had volume about 0.002024. The
largest two simplices did not contain zero.

The sequence of simplex volumes seem in our cycling example is: 0.0001035, 0.0001958,
0.0001175, 0.0001350, 0.0001435, 0.0000821.

Appendix B. Example in dimension 3 where A2 takes 40,847 iterations

This example consists of 4 unnormalized points in each of the 4 colours in R3. The points
are presented in Table 2. They are grouped by colour, with the rows representing x, y and
z coordinates, respectively.

Red points
1.00000320775369 -0.01000436049274 -0.01000129525998 1.00000089660284
0.00000340785030 0.99999739350954 -1.00000497855619 0.00000051797159
0.00999859615603 0.00000371775824 0.00000030149139 -0.01999639732055

Green points
1.00000363763560 -0.00999644886160 -0.00999943004295 1.00000335962280
-0.00000325123594 1.00000064545156 -1.00000169806216 -0.00000080450760
0.01000493174811 -0.00000024088601 0.00000009099437 -0.01999811804365

Blue points
0.99999949817337 -0.00999587145461 -0.00999627213896 0.99999551963712
-0.00000260397964 1.00000485455718 -1.00000419710665 -0.00000024626161
0.00999854691703 0.00000123671997 -0.00000381812529 -0.01999801526314

Tan points
0.99999980645233 0.10000000280522 -0.60000327600988 0.99999642880542
0.00000024487465 -0.98999719313413 0.79999695643245 -0.00000429109491
0.01000455311709 -0.00000405877812 0.00000372117690 -0.01000272055280

Table 2. Coordinates of points of an example taking 40,847 iterations of A2
in dimension 3.

The initial simplex is taken to be (1,1,1,1), i.e., the first point of each colour. It then
updates to (1,3,1,1), (1,3,2,1), (1,3,2,3), (1,3,2,2) and reaches (3,3,2,2) on the fifth iteration.
At this point, it begins to flip between (3,3,2,2) and (2,3,2,2) with y initially alternating
between values close to (0.2,±0.00200,0.00285). The values of all these coordinates decrease
very slowly as the algorithm continues. At iteration 40,847 it chooses fourth point of colour
1 instead of the third. This makes the current simplex (4,3,2,2) which contains ~0.

16 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

Appendix C. Iteration counts from our experiments

In this Appendix we present the raw data from our computational experiments. Each
table presents results for a single random generator. The entries give the average number of
iterations to solution for each algorithm at the given dimension. For each generator at d = 3
we sampled 100,000 problems, at d = 6 and d = 12 we sampled 10,000 problems, at d = 24
and d = 48 we sampled 1,000 problems and finally for d ≥ 96 we sampled 100 problems.

A1 A2 A3 A4 A5 A6 A7

d = 3 1.31 2.96 1.15 1.15 1.15 1.31 7.15
d = 6 2.56 6.87 1.77 1.67 1.67 2.90 63.48
d = 12 4.84 13.93 2.42 2.16 2.16 7.01 4133.15
d = 24 8.84 27.70 3.07 2.87 2.87 19.07 Large
d = 48 16.14 54.88 3.77 4.14 4.14 56.12 Large
d = 96 28.80 108.71 4.26 6.39 6.39 185.57 Large
d = 192 51.96 217.59 4.99 11.68 11.68 808.78 Large
d = 384 Unstable 425.26 Unstable 21.63 Unstable Large Large

Table 3. Average iteration counts in G1 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 5 136 4 4 4 5 102
d = 6 7 21 5 5 5 12 579
d = 12 10 30 6 6 6 20 47362
d = 24 15 37 6 8 8 43 Large
d = 48 22 67 6 9 9 105 Large
d = 96 39 120 6 10 10 269 Large
d = 192 63 241 7 19 19 1574 Large
d = 384 Unstable 472 Unstable 30 Unstable Large Large

Table 4. Maximum iteration counts found in G1 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 1.39 5.62 1.25 1.43 1.43 1.38 7.30
d = 6 2.92 17.00 2.17 3.14 2.89 3.54 66.02
d = 12 5.83 33.48 3.23 6.65 5.64 10.26 4296.66
d = 24 11.18 64.30 4.29 13.86 10.86 31.75 Large
d = 48 20.24 123.02 5.51 27.91 21.11 106.11 Large
d = 96 37.12 240.49 6.54 56.70 40.91 406.10 Large
d = 192 Unstable 468.52 Unstable 111.84 Unstable 3367.60 Large
d = 384 Unstable 909.82 Unstable 220.50 Unstable Large Large

Table 5. Average iteration counts in G2 generator tests.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 17

A1 A2 A3 A4 A5 A6 A7

d = 3 5 4783 4 5 5 6 109
d = 6 8 2880 6 44 10 14 1079
d = 12 13 842 8 60 14 33 78418
d = 24 21 217 9 36 23 78 Large
d = 48 31 249 9 55 41 258 Large
d = 96 47 323 9 77 76 840 Large
d = 192 Unstable 561 Unstable 140 Unstable 11784 Large
d = 384 Unstable 1013 Unstable 260 Unstable Large Large

Table 6. Maximum iteration counts found in G2 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 1.51 5.93 1.31 1.51 1.51 1.48 9.16
d = 6 3.48 17.26 2.35 3.31 3.01 4.10 150.31
d = 12 7.64 37.22 3.62 8.06 6.43 13.61 Large
d = 24 16.59 75.73 5.11 19.11 13.92 48.51 Large
d = 48 33.51 155.48 6.57 42.81 28.70 159.29 Large
d = 96 61.97 306.64 8.32 90.98 58.44 602.07 Large
d = 192 Unstable 619.55 Unstable 186.86 Unstable 9607.73 Large
d = 384 Unstable 1221.43 Unstable 382.10 Unstable Large Large

Table 7. Average iteration counts in G3 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 6 2756 5 6 6 6 127
d = 6 9 3704 7 38 9 14 1709
d = 12 16 689 8 55 16 46 Large
d = 24 28 195 9 52 27 124 Large
d = 48 50 257 10 83 47 505 Large
d = 96 78 374 11 133 83 2023 Large
d = 192 Unstable 736 Unstable 226 Unstable 72317 Large
d = 384 Unstable 1399 Unstable 454 Unstable Large Large

Table 8. Maximum iteration counts found in G3 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 0.89 2.07 0.82 0.71 0.71 0.89 2.12
d = 6 0.99 3.96 0.68 0.66 0.66 0.99 1.94
d = 12 0.97 7.61 0.63 0.63 0.63 0.97 1.78
d = 24 0.99 15.46 0.64 0.64 0.64 0.99 1.83
d = 48 1.01 31.15 0.65 0.65 0.65 1.01 1.87
d = 96 1.06 61.44 0.64 0.64 0.64 1.06 1.81
d = 192 0.90 122.88 0.64 0.64 0.64 0.90 1.77
d = 384 0.77 211.20 0.55 0.55 0.55 0.77 1.50

Table 9. Average iteration counts in G4 generator tests.

18 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

A1 A2 A3 A4 A5 A6 A7

d = 3 2 5 2 3 3 2 38
d = 6 3 7 2 2 2 3 17
d = 12 6 12 1 1 1 6 30
d = 24 6 24 1 1 1 6 19
d = 48 5 48 1 1 1 5 16
d = 96 5 96 1 1 1 5 14
d = 192 3 192 1 1 1 4 15
d = 384 4 384 1 1 1 4 9

Table 10. Maximum iteration counts found in G4 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 1.26 2.72 0.99 0.91 0.91 1.26 9.67
d = 6 2.39 5.97 1.09 0.99 0.99 2.39 161.93
d = 12 4.61 12.00 1.12 1.00 1.00 4.61 Large
d = 24 8.94 24.00 1.13 1.00 1.00 8.94 Large
d = 48 17.82 48.00 1.15 1.00 1.00 17.82 Large
d = 96 35.58 96.00 1.19 1.00 1.00 35.58 Large
d = 192 71.15 192.00 1.47 1.00 1.00 71.15 Large

Table 11. Average iteration counts in G5 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 3 5 3 2 2 3 128
d = 6 5 6 3 1 1 5 1371
d = 12 9 12 3 1 1 9 Large
d = 24 14 24 2 1 1 14 Large
d = 48 24 48 2 1 1 24 Large
d = 96 41 96 2 1 1 41 Large
d = 192 81 192 3 1 1 81 Large

Table 12. Maximum iteration counts found in G5 generator tests.

A1 A2 A3 A4 A5 A6 A7

d = 3 2.19 3.54 1.96 1.59 1.59 2.26 24.39
d = 6 6.27 7.67 3.24 2.23 2.23 6.65 21041.05
d = 12 14.64 15.23 3.63 2.92 2.92 16.03 Large
d = 24 30.55 30.42 3.40 3.71 3.71 34.25 Large
d = 48 61.96 60.95 3.27 4.89 4.89 69.65 Large
d = 96 125.31 121.73 3.45 6.26 6.26 140.79 Large
d = 192 Unstable 242.06 Unstable 9.31 Unstable Unstable Large

Table 13. Average iteration counts in G6 generator tests.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 19

A1 A2 A3 A4 A5 A6 A7

d = 3 5 7 5 4 4 6 242
d = 6 12 15 7 6 6 12 173941
d = 12 25 25 8 9 9 25 Large
d = 24 47 49 9 13 13 51 Large
d = 48 101 94 13 22 22 95 Large
d = 96 154 174 6 35 35 183 Large
d = 192 Unstable 331 Unstable 69 Unstable Unstable Large

Table 14. Maximum iteration counts found in G6 generator tests.

20 ANTOINE DEZA, SUI HUANG, TAMON STEPHEN, AND TAMÁS TERLAKY

Appendix D. Average time per iteration

In Table 15 we give the average CPU time per iteration for our G1 experiments. This
was computed using the MATLAB cputime function.

A1 A2 A3 A4 A5 A6 A7

d = 3 0.0075 0.0009 0.0078 0.0019 0.0021 0.0012 0.0002
d = 6 0.0087 0.0010 0.0095 0.0033 0.0035 0.0012 0.0002
d = 12 0.0124 0.0013 0.0141 0.0073 0.0074 0.0016 0.0004
d = 24 0.0229 0.0022 0.0267 0.0182 0.0184 0.0030 0.0007
d = 48 0.0625 0.0043 0.0702 0.0474 0.0477 0.0085 0.0014
d = 96 0.2510 0.0099 0.2608 0.1318 0.1324 0.0495 0.0035
d = 192 1.5592 0.0277 1.2623 0.3275 0.3268 0.7843 0.0121
d = 384 Unstable 0.1144 Unstable 1.1381 Unstable Unstable 0.0619

Table 15. Average iteration times on G1 generator tests.

The time per iteration is fairly constant across problem types so we do not include data
from the other generators. One difference that will occur is that A5 will have a higher
average iteration time as that A4 for ill-conditioned problems. In random problems, we
rarely see slow convergence of A4 so it is unnecessary to use the slower steps from A3. With
ill-conditioned problems the A3 steps become more frequent and increase the average time
per iteration.

References

[Bár82] I. Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), no. 2-3, 141–152.
[BM07] I. Bárány and J. Matoušek, Quadratically many colorful simplices, SIAM Journal on Discrete

Mathematics 21 (2007), no. 1, 191–198.
[BO97a] I. Bárány and S. Onn, Carathéodory’s theorem, colourful and applicable, Intuitive geometry (Bu-

dapest, 1995), Bolyai Soc. Math. Stud., vol. 6, János Bolyai Math. Soc., Budapest, 1997, pp. 11–
21.

[BO97b] , Colourful linear programming and its relatives, Math. Oper. Res. 22 (1997), no. 3, 550–
567.

[DHST06] A. Deza, S. Huang, T. Stephen, and T. Terlaky, Colourful simplicial depth, Discrete Comput.
Geom. 35 (2006), no. 4, 597–604.

[Hua] S. Huang, MATLAB code for colourful linear programming, available at:
http://optlab.mcmaster.ca/˜huangs3/CLP/ and
http://www.math.sfu.ca/˜tamon/Software/CLP/.

[KM72] V. Klee and G. J. Minty, How good is the simplex algorithm?, Inequalities III, Proc. 3rd Symp.,
Los Angeles 1969, Academic Press, 1972, pp. 159–175.

[Lu06] Z. Lu, personal communication, 2006.
[ST05] T. Stephen and H. Thomas, A quadratic lower bound for colourful simplicial depth, submitted.

arXiv:math.CO/0512400, 2005.
[WW01] U. Wagner and E. Welzl, A continuous analogue of the upper bound theorem, Discrete Comput.

Geom. 26 (2001), no. 2, 205–219.
[Wol76] P. Wolfe, Finding the nearest point in a polytope, Math. Programming 11 (1976), 128–149.

ALGORITHMS AND TESTS FOR THE COLOURFUL FEASIBILITY PROBLEM 21

Advanced Optimization Laboratory, Department of Computing and Software, 1280 Main
St. West, McMaster University, Hamilton, Ontario, Canada L8S 4K1.

E-mail address: {deza,terlaky}@mcmaster.ca, huangs3@optlab.mcmaster.ca

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby,
British Columbia, Canada V5A 1S6.

E-mail address: tamon@sfu.ca

