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Abstract—We present a novel rank-2 update formula for 

nonlinear optimization problems.  The currently available BFGS 
rank-2 formula is primarily designed to update symmetric 
positive definite Hessian matrices.  Our proposed modified rank-
2 BFGS formula updates non-symmetric rectangular Jacobian 
matrices.  The novel updating formula is illustrated through 
applying the aggressive space mapping algorithm to two 
microwave circuits.  Our new updating formula shows a 
convergence rate similar to or faster than the available rank-1 
Broyden update. 

 
Index Terms—BFGS update, Broyden update, CAD, EM 

optimization, EM simulation, filter design, space mapping. 

I. INTRODUCTION 
he space mapping (SM) approach aims at optimizing a 
fine electromagnetic (EM) model using a much faster but 

less accurate coarse model.  Aggressive space mapping 
(ASM) iteratively updates the mapping P between the 
parameter spaces of a coarse and a fine model [1].  The 
mapping Jacobian is approximated by a matrix B, i.e., 

( )P f≈B J x .  Different schemes proposed in the literature to 

update the matrix B are reviewed in [1].  In the aggressive SM 
approach [2], a proposed technique based on the Broyden 
rank-1 formula [3] is employed to update B.  The Broyden-
based scheme exhibits good results [2].  Rank-1 updates give 
limited degrees of freedom in changing the updated matrix 
components.  This may slow the convergence to the optimal 
design.  Only Broyden rank-1 formula is currently available 
for updating the non symmetric Jacobian matrices in solving 
nonlinear systems. 

We propose a novel modified BFGS-type rank-2 updating 
formula for the non-symmetric case, e.g., the Jacobian, which 
is in general a rectangular matrix.  The proposed formula is 
compared with the Broyden formula using two examples. It 
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provides the same or better convergence results for the 
considered examples using the aggressive SM algorithm. 

II. THEORETICAL BACKGROUND 
The aggressive SM solves the nonlinear system [2] 

*( ) ( )f f c= − =f f x P x x 0
 (1) 

for n
f fX∈ ⊆x , where *

cx  is the optimal coarse model 
solution.  Here we use the vector valued function 

: n mf  to represent a mapping between the coarse and 
fine models design spaces with different dimensionalities.  
According to the Newton method for nonlinear equations [4], 
the solution of (1) at the jth iteration is given by 

( 1) ( ) ( )( ) ( ) ( ),    j j jj j j
Pf f

+ = + = −x x h J h f . (2) 

A. The Broyden Method 
Since the first-order information to evaluate PJ  may be 

difficult to obtain, Broyden [3] suggested a formula which 
updates an estimate of the Jacobian matrix ( 1)( 1) jj

P
++ ≈B J  

iteratively by satisfying the secant condition [4] 
( ) ( 1) ( )j j j+=y B h , (3) 

where ( 1)j m n+ ×∈B , ( ) ( ) and  j jh y  are the difference 
between the successive iterates and the successive function 
values, respectively, i.e., 

( 1) ( )( ) ( ) ( 1) ( ),j jj j j j
f f

+ += − = −h x x y f f . (4) 

A correction matrix ( )jC  is used to iteratively approximate 
the Jacobian matrix as [5] 

( 1) ( ) ( )j j j= ++B B C . (5) 
In the case of a rank-1 updating matrix, the Broyden non-

symmetric rank-1 formula for updating Jacobians is [3], [4] 
( ) ( ) ( )

( 1) ( ) ( )
( ) ( )

j j j
j j j T

j T j= ++ −y B hB B h
h h

. (6) 

B. The BFGS Formulation 
The BFGS method was introduced in the context of quasi-

Newton methods for nonlinear optimization [4] to update 
approximations to the Hessian matrix.  The symmetric and 
positive definite Hessian approximating matrix accounts for 
the curvature measured during the most recent steps and it 
satisfies the secant condition [4].  Applying the BFGS 
updating formula to update the Jacobian matrix is not valid.  
This is because the conditions imposed to produce the BFGS 
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formula, symmetry and positive definiteness of the Hessian 
matrix, do not hold in the case of the Jacobian matrix.  

We propose a new rank-2 updating formula to update the 
Jacobian matrix used in solving the system of nonlinear 
equations (1).  Here, we develop a non-symmetric rank-2 
updating formula to adopt the Jacobian matrix characteristics.  
The proposed formula is based on the BFGS formulation. 

C. A Non-Symmetric BFGS Updating Formula 
In the case of a rank-2 updating matrix, the successive 

approximation formula (5) can be given by [5] 
( 1) ( ) ( ) ( ) ( ) ( )j j j j T j j T= + +α β+B B a b c d , (7)

where α  and  β ∈ , ( ) ( ),  j j m∈a c and ( ) ( ) and j j n∈b d . 
Here, for our proposed non-symmetric update, we choose 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,  ,  and  

,  

j j j j

j j j j j T j

= =

= =

a y b h

c B h d B y
. (8)

Hence, the updating formula for the non-symmetric case 
becomes 

( )( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j T j j j T j= + +α β+B B y h B h y B . (9)

We apply the secant condition (3) by multiplying both sides 
of (9) by ( )jh  defined in (4): 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )        

j j j

j j T j j j j T j j

+

+α β

=y B h

y h h B h y B h
 (10)

We calculate the coefficients  and α β  to satisfy the secant 
condition as 

( ) ( ) ( ) ( ) ( )
1 1,   j T j j T j jα β −

= =
h h y B h

. (11)

By substituting the values of  and α β  from (11) into (9), 
the proposed non-symmetric rank-2 updating formula for 

( 1)j m n+ ×∈B becomes 
( ) ( ) ( ) ( ) ( ) ( )

( 1) ( )
( ) ( ) ( ) ( ) ( )

j j T j j j T j
j j

j T j j T j j=+ + −
y h B h y BB B
h h y B h

. (12)

III. EXAMPLES 
We apply the aggressive SM algorithm to a seven-section 

transmission line impedance transformer and a six-section H-
plane waveguide filter by solving (1).  We compare the usage 
of the Broyden (6) and the proposed non-symmetric BFGS 
(12) updating formulas.  In both examples, we use the least-
squares Levenberg-Marquardt algorithm available in Matlab 
for the parameter extraction (PE) step [1].  The coarse model 
optimization uses the gradient-based minimax optimization 
routine presented in [6]. 

A. Seven-section Capacitively Loaded Impedance 
Transformer 
The seven-section transmission line (TL) capacitively 

loaded impedance transformer example is described in [7].  
We consider a “coarse” model as an ideal seven-section TL, 
where the “fine” model is a capacitively-loaded TL with 

capacitors 1 8 0.025 pFC C  = = = .  Design parameters are 

the normalized lengths [ ]1 2 3 4 5 6 7 =       T
f L L L L L L Lx , w.r.t. 

the quarter-wave length at 4.35 GHz.  Design specifications 
are given by 

11 0.07, for 1 GHz 7.7 GHzS ω≤ ≤ ≤  (13) 
with 68 points per frequency sweep.  The characteristic 
impedances for the transformer are fixed as in [7].  We apply 
the ASM algorithm [2] utilizing the two formulas to update 
the mapping Jacobian matrix B utilizing 6 iterations. 

Convergence results are given in Table I.  The modified 
BFGS update provides better convergence w.r.t. the Broyden 
update.  The reductions of 2f  versus iteration using the 

Broyden and the modified BFGS formulas are shown in Fig 1.  
Fig. 2 shows the final response using the modified BFGS. 

B. Six-Section H-plane Waveguide Filter 
We consider the six-section H-plane waveguide filter [8].  

A waveguide with a width 1.372 inches (3.485cm) is used.  
The six-waveguide sections are separated by seven H-plane 
septa, which have a finite thickness of 0.0245 inches (0.6223 
mm).  The design parameters are the three waveguide-section 
lengths L1, L2 and L3 and the septa widths W1, W2, W3 and W4.  
A minimax objective function is employed with upper and 
lower design specifications as 

11

11

11

0.16 for 5.4 GHz  9.0 GHz

0.85 for  5.2 GHz

0.5   for 9.5 GHz

S

S

S

ω

ω

ω

≤ ≤ ≤

≥ ≤

≥ ≥  

(14) 

The fine model utilizes the time-domain full-wave 
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Fig. 1.  2f  versus iteration for the seven-section TL capacitively loaded 

impedance transformer using the modified BFGS update. 

TABLE I 
ASM USING BROYDEN RANK-1 VERSUS MODIFIED BFGS RANK-2 UPDATES 

FOR THE SEVEN-SECTION CAPACITIVELY LOADED IMPEDANCE 
TRANSFORMER 

Updating method Iterations 2f  

Broyden 6 7.4e–4 
modified BFGS 6 3.3e–4 
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simulator MEFiSTo [9] with a square cell Δx = Δy = 0.6223 
mm and Johns matrix boundaries with Nt  = 8000 time steps.  
We utilize 51 points in the frequency range 5.0GHz ≤ ω ≤ 
10.0GHz.  A coarse model with lumped inductances and 
dispersive transmission line sections is utilized.  We simplify 
formulas due to Marcuvitz [10] for the inductive susceptances 
corresponding to the H-plane septa.  They are connected to the 
transmission line sections through circuit theory [11]. 

Convergence results are given in Table II.  We see that the 
modified BFGS update provides better convergence than the 
Broyden update.  The reductions of 2f  versus iteration 

using the Broyden and the modified BFGS formulas are 
shown in Fig. 3.  The final response using the modified BFGS 
update is shown in Fig. 4. 

IV. CONCLUSIONS 
We propose a modified rank-2 BFGS updating formula for 

the non-symmetric rectangular case.  The proposed formula is 
successfully examined with two examples.  It provides better 
convergence for solving the nonlinear equations system using 
the aggressive SM algorithm versus the Broyden rank-1 

update. 
The results presented are promising.  We expect that the 

proposed formula will enhance the convergence properties of 
the aggressive SM algorithm if the coarse model is badly 
chosen.  Employing the trust region methodology to improve 
the algorithm convergence needs further investigation. 
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Fig. 2.  Optimal coarse model response (--), optimal fine model response (–
•–) and the final fine model response (•) for the seven-section transmission 
line capacitively loaded impedance transformer at using the modified BFGS 
update. 
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Fig. 3.  2f  versus iteration for the six-section H-plane waveguide filter 

using the modified BFGS update. 

TABLE II 
ASM USING BROYDEN RANK-1 VERSUS MODIFIED BFGS RANK-2 UPDATES 

FOR THE SIX-SECTION H-PLANE WAVEGUIDE FILTER 

Updating method Iterations 2f  

Broyden 7 5.8e–5 
modified BFGS 7 1.7e-5 
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Fig. 4.  Optimal coarse model response (--) and the fine model response (•) 
for the six-section H-plane waveguide filter at the final iteration using the 
modified BFGS update. 


