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On hyperbolicity cones associated with

elementary symmetric polynomials and their dual

cones

Yuriy Zinchenko

Abstract

One can easily characterize the closure of the hyperbolicity cone
Kp associated to an arbitrary hyperbolic polynomial p in terms of
finitely many polynomial inequalities and construct a logarithmic
self-concordant barrier functional for Kp. In contrast, little is known
about its dual cone Kp

∗.
Elementary symmetric polynomials can be thought of as deriva-

tive polynomials of En(x) =
∏

i=1...n xi. Their associated hyperbol-
icity cones give a natural sequence of relaxations for Rn

+ = KEn .
Once the recursive structure of these cones is established, we give
an algebraic characterization for the dual cone associated with
En−1(x) =

∑
1≤i≤n

∏
j 6=i xj and show how one can easily construct

a self-concordant barrier functional for this cone.

1 Introduction

Let X (≡ Rn) be a finite dimensional real vector space equipped with an inner
product 〈·, ·〉 : X ×X → R. Denote 1 ∈ Rn – vector of all ones.

Hyperbolic polynomials and the associated hyperbolicity cones have origins
in partial differential equations (see [12]). Recently, these structures have drawn
considerable attention in the optimization community as well (see [6], [2], [14], [7]).
It turns out that most of interior point methods (IPM) theory (see [11], [13])
applies naturally to the class of conic programming problems (CP)1 arising from
hyperbolicity cones (what we refer to as hyperbolic programming program). In
particular, linear programming, second-order conic programming and positive
semi-definite programming are themselves instances of conic programming prob-
lems of this kind.

Definition 1.1. For a cone K ⊆ Rn, the dual cone is defined as K∗ = {y ∈
Rn : ∀x ∈ K, 〈x, y〉 ≥ 0}

1A conic program is an optimization problem of the form {infx〈c, x〉 : Ax = b, x ∈ K} with
K ⊂ Rn being a closed convex cone, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. It is well known that
any convex optimization problem can be recast as conic programming problem.
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Often, the dual cone provides much information about the original CP (in-
deed, the most successful IPM algorithms are the so-called primal-dual algo-
rithms, which follow the so-called central paths in K and K∗ simultaneously).
Hence, the understanding of the structure of both the primal cone and the dual
cone for a given conic programming problem usually plays a very important
role in achieving greater computational efficiency in solving these optimization
problems.

While a simple characterization for the hyperbolicity cones as a set of poly-
nomial inequalities is known, little is known regarding the algebraic structure
of their dual cones, with some exceptions (see [5]). That the dual cones can be
represented by systems of polynomial inequalities follows from Tarski’s estab-
lishment of quantifier elimination methods (see [4]). These methods, however,
give little insight into the precise algebraic structure of the dual cones, because
the methods result in extremely complicated systems of polynomial inequalities,
even for hyperbolic polynomials in 3 variables.

We attempt to understand the structure of hyperbolicity cones associated
with elementary symmetric polynomials (which is an important family of hy-
perbolicity cones) and the structure of the associated dual cones.

2 Hyperbolic programming

Definition 2.1. Let p : X → R be a homogeneous polynomial of degree m ∈ N
(i.e., p(tx) = tmp(x), ∀t ∈ R and every x ∈ X) and d ∈ X is such that p(d) 6= 0.
Then p is hyperbolic with respect to d if the univariate polynomial λ 7→ p(x−λd)
has all roots real for every x ∈ X.

Examples:

• X = Rn, d = 1. The nth elementary symmetric polynomial, En(x) =∏n
i=1 xi, is a hyperbolic polynomial with respect to d (for En(x − λ1) =∏n
i=1(xi − λ)),

• X = Sk, the space of real symmetric k × k matrices, d = I (identity
matrix). The determinant, det(x), is a hyperbolic polynomial in direction
d (for the eigenvalues of x ∈ Sk are the roots of det(x− λI) and are real).

The roots are called the eigenvalues of x (in direction d), terminology motivated
by the last example. We denote the eigenvalues by

λ1(x) ≤ λ2(x) ≤ · · ·λm(x)

or simply λ(x)(∈ Rm).
We introduce sums of the smallest k eigenvalues as follows

sk :=
k∑

i=1

λi

(denoting s(x) = (s1, s2, . . . , sm) ∈ Rm).
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Fact 2.2 ([2]; also see [12], [14] for s1(x) ≡ λ1(x)). sk(x) is a concave function
∀k.

Definition 2.3. The hyperbolicity cone of p with respect to d, written C(p, d),
is the set {x ∈ X : p(x + td) 6= 0, ∀t ≥ 0}.

Note that C(p, d) = {x ∈ X : λ1(x) > 0}.
Examples:

• X = Rn, d = 1, p(x) = En(x), then C(p, d) = Rn
++ (the positive orthant),

• X = Sk, d = I, p(x) = det(x), then C(p, d) = Sk
++ (the cone of positive

definite matrices).

Fact 2.4 ( [12]). Given a pair p, d:

(i) d ∈ C(d),

(ii) C(d) is an open convex cone,

(iii) clC(d) = {x ∈ X : λ1(x) ≥ 0},
(iv) if c ∈ C(d), then p is hyperbolic in direction c and C(c) = C(d).

3 Derivative polynomials and primal cone char-
acterization

3.1 Derivative polynomials

Given a hyperbolic polynomial p (of degree m) in direction d, denote

p′(d, x) =
∂

∂t
p(x + td)|t=0 = ∇xp(x)T d

We will refer to p′ as the “derivative polynomial of p (with respect to d)”
and usually will write p′(x) instead of p′(d, x) omitting (the parameter) d for
simplicity of notation (when the choice of d is obvious). By the root interlacing
property for the polynomials with all real roots (by continuity between any two
roots of t 7→ p(x + td) there is a root of ∂

∂tp(x + td)) it follows that p′(x) is also
hyperbolic in direction d.

Similarly, (for a fixed hyperbolicity direction d) we can define higher deriva-
tives p′′, p′′′, . . . , p(m). Note that since p was assumed to be of degree m, p(m−1)

is linear and pm(x) is constant.
Example: X = Rn, d ∈ Rn

++, p(x) = En(x). Then by easy computation one
can show that

E(k)
n (x) = (k!)En(d)En−k

([
x1

d1
,
x2

d2
, . . . ,

xn

dn

])

where Ek(x) is the kth elementary symmetric polynomial2.

2Ek(x) =
P

1≤i1<i2<···<ik≤n

Qk
j=1 xij
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Remark 3.1. It should be noted that the elementary symmetric polynomials
in the example above also play an important role in representing the deriva-
tive polynomials via the eigenvalues at a point x ∈ X. As a consequence of
homogeneity (see, for example, [14]) it follows that

p(k)(x) = (k!)p(d)Em−k(λ)

3.2 Cone characterization

Denote Kp,d := clC(p, d), the closure of hyperbolicity cone. When the choice of
d is obvious, we will omit it from the notation, thus writing just Kp.

We present a well-known result giving one particular characterization of
Kp,d.

Theorem 3.2 (see, for example, [14]). Suppose p is a hyperbolic polynomial
of degree m with respect to d, (w.l.o.g.) p(d) > 0, and p′, p′′, . . . are defined as
above. Then

Kp,d = {x ∈ Rn : p(x) ≥ 0, p′(x) ≥ 0, p′′(x) ≥ 0, . . . , p(m−1)(x) ≥ 0}

Corollary 3.3. Given a pair p, d we have the following cone inclusions:

Kp,d ⊆ Kp′,d ⊆ · · · ⊆ Kp(m−1),d

In particular, for X = Rn, d ∈ Rn
++,

Rn
+ = KEn,d ⊆ K

E
(1)
n ,d

⊆ · · · ⊆ K
E

(n−1)
n ,d

giving us a natural sequence of relaxations of the nonnegative orthant.

Corollary 3.4. Given a pair p, d, p(d) > 0, the boundary of Kp,d satisfies

∂Kp,d = {x ∈ Rn : p(x) = 0, p′(x) ≥ 0, . . . , p(m−1)(x) ≥ 0}

Proof. Follows from the root interlacing property for hyperbolic polynomials.

Proposition 3.5. Assume 1 ≤ r ≤ (m− 2). If x ∈ Kp(r),d and p(r+1)(x) = 0
(that is x ∈ Kp(r+1),d), then x ∈ Kp,d.

Proof. By the root interlacing property for polynomials with all real roots it
follows that t = 0 is a multiple root of t 7→ p(r)(x + td) of multiplicity l ≥ 2.
Therefore, 0 is a root of multiplicity (l + 1) for t 7→ p(r−1)(x + td), and so on,
until we get to p itself. Since 0 is the right-most root for t 7→ p(r)(x + td)
(x ∈ Kp(r),d), it is also the right-most root t 7→ p(x + td) (by counting roots).
So x ∈ Kp,d (in fact, x ∈ ∂Kp,d).
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4 Semi-definite representability and the dual cones

It has been long hypothesized that the hyperbolicity cones and the cone of
positive semi-definite matrices have strong connections. In particular one of
the open questions is whether the hyperbolicity cones are more general than
the linear sections of Sd

+ (and consequently, whether hyperbolic programming
is any more general than SDP).

In 1958, Peter Lax conjectured that each hyperbolic polynomial p(x) in 3
variables satisfies p(x) = det(x1A + x2B + x3C), for some A,B, C ∈ Sd, conse-
quently each hyperbolicity cone in 3 variables can be realized as the intersection
of Sd

+ with an affine subspace of Sd. The conjecture was recently established
affirmatively in [10] – as a corollary to work of[8]. It remains open whether sim-
ilar representations hold for hyperbolicity cones in more than three variables,
although such representations have been established for important broad fami-
lies of hyperbolicity cones (in particular, the so-called homogeneous cones,[5]).

It turns out that this representation also explains the structure of the cor-
responding dual cones (under some mild assumptions).

Definition 4.1 (as in [3]). The (convex) set Y ⊆ Rn is said to be SDR
(positive semi-definite representable) if

x ∈ Y ⇔ A
[

x
u

]
+ B º 0 (is positive semi-definite), for some u ∈ Rm

where B ∈ Sk and A : Rn+m → Sk can be written as

A
[

x
u

]
=

n∑

i=1

xiAi +
m∑

j=1

ujBj

with Ai, Bj ∈ Sk.

Fact 4.2. If X is SDR then so is an affine image of X.

Proof. Can easily show by switching to the appropriate basis in Sk, see [3].

We give a SDR analogue of a Second-Order Cone Representability Theorem
in [3].

Proposition 4.3. If K ⊂ Rn is a (closed convex) cone with nonempty interior
and

K =
{

x ∈ Rn : ∃u such that A
[

x
u

]
+ B º 0

}

then its dual satisfies

K∗ =
{

y ∈ Rn : ∃Λ such that
(

y
0

)
= A∗Λ, 〈B, Λ〉 ≤ 0, Λ º 0

}

where A∗ : Sk → Rn+m is the adjoint of A, defined as

A∗Λ = (〈A1,Λ〉, 〈A2, Λ〉, · · · , 〈An, Λ〉, 〈B1, Λ〉, · · · , 〈Bm,Λ〉)
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Proof. Considering the primal-dual pair

inf
x,u

{[
y
0

]T [
x
u

]
: A

[
x
u

]
+ B º 0

}

and

sup
Λº0

{〈−B, Λ〉 = −Tr(BΛ) : 〈Ai,Λ〉 = yi, i = 1 . . . n, 〈Bj ,Λ〉 = 0, j = 1 . . . m}

by the Conic Duality Theorem ( [13]) we conclude that y ∈ K∗, iff the first
problem is bounded below by 0, and hence iff the second has a feasible solution
with the value of at least 0. Thus

K∗ = {y : ∃Λ º 0 s.t. 〈Ai, Λ〉 = yi, i = 1 . . . n, 〈Bj , Λ〉 = 0, j = 1 . . .m, 〈B, Λ〉 ≤ 0}

5 Elementary symmetric polynomials and the
ratio functional

For 0 ≤ k ≤ (n − 1), p(x) = E
(k)
n (x), d ∈ Rn

++, p′(x) = E
(k+1)
n (x) we extend

the domain of concavity for the ratio functional p(x)/p′(x) to Kp′,d (that this
function is concave over Kp,d follows from Theorem 3.8 in [2]).

Proposition 5.1 (J. Renegar). Let x ∈ Rn, d = 1 ∈ Rn, p(x) =
∏n

i=1 xi, and
p′(x) =

∑n
i=1

∏
j 6=i xi. Then

qn(x) :=
p(x)
p′(x)

is concave on Kp′,d.

Proof. We proceed by evaluating the Hessian of qn(x). Note that

qn(x) =
p(x)
p′(x)

=
1

1
x1

+ · · ·+ 1
xn

so

∂qn

∂xi
(x) =

(
1
xi

)2

(
1
x1

+ · · ·+ 1
xn

)2 , i = 1, . . . , n

∂2qn(x)
∂xi∂xj

=
2

(
1
xi

)2 (
1
xj

)2

(
1
x1

+ · · ·+ 1
xn

)3 , i 6= j
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∂2qn(x)
∂xi∂xi

=
2

(
1
xi

)2 (
1
xi

)2

(
1
x1

+ · · ·+ 1
xn

)4




(
1
x1

+ · · ·+ 1
xn

)
−

(
1
x1

+ · · ·+ 1
xn

)2

(
1
xi

)




Denoting

M := −Diag







(
1
xi

)3

(
1
x1

+ · · ·+ 1
xn

)3




n

i=1




we can rewrite the Hessian of qn as

∇2qn = 2
(

1
x1

+ · · ·+ 1
xn

) (∇qn∇qn
T + M

)

Note that qn(x) < 0 in the interior of Kp′\Kp, and exactly one of xi < 0
while the rest of the coordinates are positive (follows from the root interlacing
property mentioned before). Thus M has all diagonal entries > 0 (eigenvalues)
with the exception of one. By adding a rank-one positive semi-definite matrix
∇qn∇qn

T to M the eigenvalues of a resulting matrix can only be shifted to the
right. But note that ∇2qn(x)x = 0 (because qn is homogeneous of degree 1),
henceforth the smallest (i.e., the negative) eigenvalue of M becomes 0 under
this rank-one perturbation. Therefore, ∇2qn(x) ¹ 0. For x ∈ ∂Kp/∂Kp′ use
the limiting argument.

In the intKp = Rn
++ one can demonstrate the concavity as follows. We need

qn(αx + (1− α)y) ≥ αqn(x) + (1− α)qn(y) , ∀α ∈ [0, 1], x, y ∈ Rn
++

Note that 1
x is convex on R++, from which follows that

qn(αx + (1− α)y) ≥ 1
α
x1

+ (1−α)
y1

+ · · ·+ α
xn

+ (1−α)
yn

=
1

α
(

1
x1

+ · · ·+ 1
xn

)
+ (1− α)

(
1
y1

+ · · ·+ 1
yn

)

≥ α
1
x1

+ · · ·+ 1
xn

+
(1− α)

1
y1

+ · · ·+ 1
yn

= αqn(x) + (1− α)qn(y)

Remark 5.2. Note that if L is an affine space not containing the origin then qn(x)
is strictly concave on the relative interior of (Kp′ \Kp)

⋂
L) since ∇2qn(x) ≺ 0

on this set because we eliminate the only possible direction of singularity for
this matrix.

Theorem 5.3. Assume 0 ≤ k ≤ (n − 1). Let d ∈ Rn
++, p(x) = E

(k)
n (x),

p′ = E
(k+1)
n (x) (with respect to d). Then

qd(x) :=
p(x)
p′(x)
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is concave on Kp′,d.

Proof. Recall p(x) = p(d)
∏m

j=1 λj(x) and p′(x) = p(d)
∑m

j=1

∏
k 6=j λk(x) where

λ(x) is the vector of eigenvalues of x with respect to p, d. We can write

qd(x) =
p(x)
p′(x)

= Ψ(Φ(x))

where Ψ(y) = Em

Em−1
(A−1y) : Rm → Rm with A satisfying

Aij =
{

1, j ≤ i
0, j > i

and Φ(x) : x 7→ Aλ(x) = s(x) (maps x onto the sums of smallest eigenvalues,
s(x)).

If λ(x) (and consequently Φ(x)) is differentiable at a point x ∈ intKp′ , we
can express the gradient and the Hessian of qd(x) as follows:

∇qd(x) =
(

∂Ψ(Φ(x))
∂xi

)n

i=1

=




m∑

j=1

∂Ψ
∂Φj

∂Φj

∂xi




n

i=1

= Φ′(x)T∇Ψ(Φ(x))

∇2qd = (Φ′)T∇2ΨΦ′ +
n∑

k=1

∂Ψ
∂Φk

∇2Φk

where
(Φ′(x))ij =

∂Φi

∂xj
, for i, j = 1, . . . , n

Even though λ(x) is not differentiable everywhere, it is differentiable at all x
such that the components of λ(x), λi(x), are distinct (see, for example, [1]).
For p(x) = E

(k)
n (x) (with respect to hyperbolicity direction d), if x is not a

such point, i.e., if ∃m > 1 such that λj = · · · = λj+m for some j, then by
the root interlacing property it must be that xj/dj = · · · = xj+k+m/dj+k+m,
since these are the roots of t 7→ En(x− td). So we can easily choose a different
hyperbolicity direction d̃ ∈ B(d, ε) ⊂ Rn

++ (in a small ball of radius ε around
d) such that the roots of t 7→ En(x − td̃) (i.e., xi/d̃i) will be distinct, and so
will be the roots of t 7→ E

(k)
n (x− td̃). Since qd(x) is differentiable ∀x ∈ intKp′ ,

we can use the limiting argument letting ε ↓ 0 (so that ∇qd̃(x) → ∇qd(x) and
∇2qd̃(x) → ∇2qd(x) as d̃ → d). If x is a point where λ(x) is non-differentiable,
the equality above should be taken in the limiting sense as just described.

For the Hessian, the first term in the expression above is negative semi-
definite (since ∇2Ψ(y) ¹ 0, ∀y ∈ AC(Em−1,1), see Proposition 5.1 above).
Also, ∇2Φk(x) ¹ 0 since the functions Φ(x) are concave (see Fact 2.2). We
show that 0 ≤ ∂Ψ

∂sk
= ∂Ψ

∂Φk
, ∀k.

Recall that

∂
(

Em

Em−1
(λ)

)

∂λi
=

−1
(λi)2

−1(
1
λ1

+ · · ·+ 1
λm

)2 ≥ 0
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and s = Aλ, A – invertible. Then for i = m

∂Ψ
∂sm

=
∂(sm − sm−1)

∂sm

∂
(

Em

Em−1
(λ)

)

∂λm
=

(1/λm)2

(1/λ1 + · · ·+ 1/λm)2
≥ 0

and for i < m

∂Ψ
∂si

=
∂(si − si−1)

∂si

∂
(

Em

Em−1
(λ)

)

∂λi
+

∂(si+1 − si)
∂si

∂
(

Em

Em−1
(λ)

)

∂λi+1

=
1

(λi)2
1(

1
λ1

+ · · ·+ 1
λm

)2 −
1

(λi+1)2
1(

1
λ1

+ · · ·+ 1
λm

)2

Since on Kp we have 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm, it follows that ∂Ψ
∂si

≥ 0, ∀i,
for x ∈ Kp. On Kp′ we have 0 ≤ λ2 ≤ · · · ≤ λm and thus ∂Ψ

∂si
≥ 0, ∀i ≥ 2. On

Kp′\Kp we have λ1 ≤ 0 ≤ λ2 ≤ · · · ≤ λm, but we also must have |λ1| ≤ |λ2|
(see the following lemma and the corollary). Therefore, ∂Ψ

∂si
≥ 0, ∀i, for any x

in Kp′ .

Lemma 5.4. Let p(t) be an arbitrary polynomial over R of degree m with all
real roots and let p′ be its derivative polynomial. Let λ and ξ be the roots of
p and p′ such that λ1 ≤ ξ1 ≤ λ2 ≤ ξ2 ≤ · · · ≤ ξm−1 ≤ λm (i.e., p(t) =
α

∏m
i=1(t−λi), p′(t) = α

∑m
i=1

∏
j 6=i(t−λi) = α

∏m−1
k=1 (t−ξk)). Then ξi satisfies

ξi ∈
[
λi +

(λi+1 − λi)
m− i + 1

, λi+1 − (λi+1 − λi)
i + 1

]
, ∀i

Proof. If for some i, λi = λi+1, then ξi = λi as well, and the statement follows
trivially. Furthermore, by the root interlacing property it follows that if λi <
λi+1, then λi < ξi < λi+1, which is the case we consider next.

Consider the ratio p′

p (t) on the real line except for the points where p(t) = 0.

Observe that p′(t)
p(t) = 0 iff p′(t) = 0 on this set. But

p′(t)
p(t)

=

∑m
i=1

∏
j 6=i(t− λi)∏m

i=1(t− λi)
= −

(
1

λ1 − t
+ · · ·+ 1

λm − t

)

hence
1

λ1 − ξi
+

1
λ2 − ξi

+ · · ·+ 1
λm − ξi

= 0

Note that from the root ordering we have

− 1
λi − ξi

≤
(

1
λi+1 − ξi

+ · · ·+ 1
λm − ξi

)
≤ m− i

λi+1 − ξi

and

− i

λi − ξi
≥

(
1

λi+1 − ξi
+ · · ·+ 1

λm − ξi

)
≥ 1

λi+1 − ξi

The conclusion follows.
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Corollary 5.5. Let p and p′ be an arbitrary hyperbolic polynomial (of degree
m) and its derivative (w.r.t. d). Let Kp, Kp′ be the corresponding cones, let
λ = (λ1, λ2, . . . , λm) ∈ Rm with λ1 ≤ λ2 ≤ . . . ≤ λm be the roots of t 7→ p(x−td).
Then |λ1| ≤ |λ2| on Kp′\Kp.

Proof. Denote the roots of p′ by ξ1 ≤ ξ2 ≤ . . . ≤ ξm−1. From the previous
lemma we have that ξ1 ≤ λ2 − (λ2−λ1)

2 . But we know that ξ1 ≥ 0 (since we
are in Kp′). Therefore, λ2

2 + λ1
2 ≥ ξ1 ≥ 0 and λ2 ≥ −λ1 and since λ1 ≤ 0 on

Kp′\Kp we are done.

The corollary completes the proof of Theorem 5.3.

Remark 5.6 (On generalization of Theorem 5.3). In order to adapt the proof
of Theorem 5.3 to the case of an arbitrary hyperbolic polynomial p and its
derivative polynomial p′ (with respect to some d), a finer justification for differ-
entiation by parts is needed.

6 On the structure of the associated hyperbol-
icity cones and their dual cones

Firstly, we note that the cone KEk,1 has a recursive structure similar to Rn
+ =

KEn,1: by dropping some of the coordinates of x ∈ KEk,1, we obtain a vector
in “almost the same” cone (with respect to the degree of the underlying poly-
nomial) but in a lower dimensional space (compare with: a face of a simplex is
a simplex). In turn, this gives us a different characterization for KEk,1.

Following this observation to gain insight into the dual cones K∗
Ek,1, we

create a suitable decomposition of the cone KEn−1,1 into smaller convex cones,
suitable in the sense that each of the smaller cones admits a positive semi-
definite representation (see the definition 4.1). Relying on the conic duality
theory, we then obtain the dual cone for each of the smaller cones as an SDR
set in itself, and finally, we reconstruct K∗

En−1,1 as the intersection.
For a vector x ∈ Rn and an arbitrary index 1 ≤ i ≤ n, we write x−i ∈ Rn−1

for a vector whose ith coordinate has been removed.
Throughout this section fix the underlying vector space to be Rn, the hy-

perbolicity direction d ≡ 1. For a fixed 2 ≤ k ≤ (n − 1), denote p(t) :
t 7→ Ek(x + t1), for 1 ≤ i ≤ n denote p−i(t) : t 7→ Ek(x−i + t1−i) and
p′−i(t) : t 7→ (n− k)Ek−1(x−i + t1−i).

6.1 The recursive structure of the hyperbolicity cones for
elementary symmetric polynomials

Observe the recursive expression Ek(x) = xiEk−1(x−i) + Ek(x−i) for any n >
k ≥ 2 and an arbitrary index i, where Ek(·−i) : Rn−1 → R is the kth elementary
symmetric polynomial on Rn−1.
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Theorem 6.1 (Necessary condition for x ∈ KEk
). Assume 2 ≤ k ≤ n. Then

x ∈ KEk(·) only if x−i ∈ KEk−1(·−i), ∀i.
Proof. If k = n the result is obvious, so assume k < n. Fix i. Write Ek(x) =
xiEk−1(x−i) + Ek(x−i) and recall that x ∈ KEk(·) iff p(t) : t 7→ Ek(x + t1)
has only non-positive roots. Ek(·−i) and Ek−1(·−i) are both hyperbolic along
1−i ∈ Rn−1,

limt↑∞
Ek−1(x−i+t1−i)

tk−1 ≥ 0 and limt↑∞
Ek(x−i+t1−i)

tk ≥ 0,

∀x ∈ Rn (as t ↑ ∞, Ek−1(x−i + t1−i) and Ek(x−i + t1−i) will eventually be
≥ 0).

Using p−i(t), p′−i(t) as defined previously we can write p(t) = Ek(x + t1) =
(xi+t)
n−k p′−i(t) + p−i(t).

Suppose x−i /∈ KEk−1(·−i), so there must be at least one positive root of
p′−i(t). We also know that roots of p−i(t) and p′−i(t) are interlaced: enumerating
all roots (including multiplicities) of p−i(t) as {ti : i = 1, . . . , k} and roots
of p′−i(t) as {t′i : i = 1, . . . , (k − 1)} in non-decreasing order we must have
t1 ≤ t′1 ≤ t2 ≤ t′2 ≤ · · · ≤ tk−1 ≤ t′k−1 ≤ tk, 0 < t′k−1 ≤ tk and also from the
observation made about signs of p−i(t) and p′−i(t) as t ↑ ∞ we get that

p′−i(t) ≥ 0 for t ≥ t′k−1,
p−i(t′k−1) ≤ 0 and p−i(t) ≥ 0 for t ≥ tk

We consider three cases depending on the value xi.
Case 1. Suppose that −xi ≤ t′k−1. Then

p(t′k−1) = (xi+t′k−1)

n−k p′−i(t
′
k−1) + p−i(t′k−1) ≤ 0

p(tk) = (xi+tk)
n−k p′−i(tk) + p−i(tk) ≥ 0

so by continuity, p(t) must have a root between t′k−1 and tk. Since 0 ≤ t′k−1,
this root must be positive, hence x /∈ KEk(·) (see Figure 1).

Case 2. Suppose t′k−1 < xi ≤ tk. Then we can write

p(−xi) = (xi+(−xi))
n−k p′−i(−xi) + p−i(−xi) ≤ 0

p(tk) = (xi+tk)
n−k p′−i(tk) + p−i(tk) ≥ 0

and again by continuity, p(t) must have a positive root, so x /∈ KEk(·).
Case 3. Finally, suppose that tk < −xi. Then

p(tk) = (xi+tk)
n−k p′−i(tk) + p−i(tk) ≤ 0

p(−xi) = (xi+(−xi))
n−k p′−i(−xi) + p−i(−xi) ≥ 0

so by continuity, p(t) must have a positive root and therefore x /∈ KEk(·).

Corollary 6.2. Assume 2 ≤ k ≤ (n− 1) and x ∈ KEk(·). If xi ≤ 0 then x−i ∈
KEk(·−i). Moreover, if x ∈ ∂KEk(·), x /∈ Rn

+, and xi > 0, then x−i /∈ KEk(·−i).

11



Figure 1: Necessary condition for x ∈ KEk
, root interlacing case 1

Proof. We write p(t) = Ek(x + t1) = (xi+t)
n−k p′−i(t) + p−i(t) and at t = 0 we

have Ek(x) = p(0) = xi

n−kp′−i(0) + p−i(0) = xiEk−1(x−i) + Ek(x−i). Since
x−i ∈ KEk−1(·−i) by Theorem 6.1, we have p′−i(0) = (n − k)Ek(x−i) ≥ 0, and
also from Theorem 3.2, p(0) = Ek(x) ≥ 0. We rearrange terms: p′−i(0)xi =
(n− k)(Ek(x)− p−i(0)).

If xi ≤ 0 we have Ek(x)−p−i(0) ≤ 0, so p−i(0) = Ek(x−i) ≥ 0 and combined
with x−i ∈ KEk−1(·−i), this gives us x−i ∈ KEk(·−i).

Now let x ∈ ∂KEk(·), so that Ek(x) = 0, and xi > 0. We have two possibili-
ties here. If p′−i(0) > 0, then −p−i(0) > 0 and hence x−i /∈ KEk(·−i). Alterna-
tively, if p′−i(0) = 0 (x ∈ ∂KEk−1(·−i)), then p−i(0) = 0 and x−i ∈ ∂KEk(·−i), so
by Proposition 3.5, x ∈ KEn−1(·−i) ≡ Rn−1

+ . But x /∈ Rn
+, we have a contradic-

tion.

6.2 Alternative characterization of the hyperbolicity cones
associated with elementary symmetric polynomials

Instead of considering x ∈ Rn we confine ourselves to the cone Rn
↓ = {x ∈ Rn :

xn ≤ xn−1 ≤ xn−2 ≤ · · · ≤ x1}.
Theorem 6.3 (KEk

characterization). Assume 2 ≤ k ≤ n and x ∈ Rn
↓ . Then

x ∈ KEk(·) iff x−n ∈ KEk−1(·−n) and Ek(x) ≥ 0.

Proof. The conditions are necessary (see previous lemma and Theorem 3.2). We
need to show sufficiency. The case k = n is trivial, so assume k < n. If xn ≥ 0,
then obviously x ∈ KEk(·)(⊃ Rn

+), so assume xn < 0.
Let p(t), p−n(t) and p′−n(t) with corresponding roots (including multiplici-

ties) of p−n(t), {ti : i = 1, . . . , k}, and roots of p′−n(t), {t′i : i = 1, . . . , (k − 1)},
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in non-decreasing order be as before. Write p(t) = Ek(x+ t1) = (xn+t)
n−k p′−n(t)+

p−n(t)).
Observe

p(tk) =
(xn + tk)

n− k
p′−n(tk) ≤ 0

since (xn + tk) ≤ 0 (by the root interlacing tk ≤ −xn) and p′−n(tk) ≥ 0 (recall
that p′−n(t) ↑ ∞ as t ↑ ∞). Also, p(0) = Ek(x) ≥ 0 by the assumption. Thus
the interval [tk, 0] must contain at least one root of p(t).

By counting the remaining roots of p(t), t ≤ tk (by looking at sign patterns
at the endpoints of intervals [ti, t′i], i = 1, . . . , (k − 1)) we conclude that [tk, 0]
must contain only one (rightmost) root of p(t) (so there could be no other roots
to the right of 0) and hence x ∈ KEk(·).

Corollary 6.4. Assume 2 ≤ k ≤ (n − 1) and x ∈ Rn
↓ . Then x ∈ KEk(·) iff

x−n ∈ KEk(·−n) and Ek(x) ≥ 0.

Proof. Straightforward.

We make one observation about Rn
↓ , namely, for an arbitrary index i and

any k ≥ 0 we have x−i ≤ x−(i+k) (easy to check).
Let q̃(·−i) := Ek(·−i)

Ek−1(·−i)
= (n − k)p−i(0)

p′−i(0)
and recall that this function was

shown to be concave on KEk−1(·−i) and is 1-homogeneous.

Proposition 6.5. Assume 2 ≤ k ≤ n. Let q̃(·) := Ek(·)
Ek−1(·) . If x, y ∈ KEk−1(·),

then q̃(x + y) ≥ q̃(x) + q̃(y).

Proof. Since q̃(x) is concave (see Theorem 5.3) we can write−q̃(x+y
2 ) ≤ −q̃(x)−q̃(y)

2
and from homogeneity it follows that −q̃(x + y) ≤ −q̃(x)− q̃(y).

Remark 6.6 (On a set of necessary conditions, compare with Corollary 6.2).
Assume 2 ≤ k ≤ (n− 1) and x ∈ Rn

↓ . If x ∈ ∂KEk(·), then ∃j such that

x−i ∈ KEk(·−i) for i ≥ j
x−i /∈ KEk(·−i) for i < j

Proof. For fixed i and k ≥ 0, x−i ≤ x−(i+k). Observe q̃(x−(i+k)) = q̃(x−i +
(x−(i+k)−x−i)) ≥ q̃(x−i)+q̃(x−(i+k)−x−i) ≥ q̃(x−i) since (x−(i+k)−x−i) ∈ Rn

+.
The condition on x−i being in or out of KEk(·−i) for i < n (i.e., q̃(·−i) having
the right sign) is implied by “monotonicity” of q̃(·−i).

6.3 First derivative cone for Rn
+ and its dual

Recall for any hyperbolic polynomial h one can give a characterization of the
(closure of) associated hyperbolicity cone Kh by the set of polynomial inequal-
ities as in Theorem 3.2. For p(x) = En(x) and its derivative p′(x) = En−1(x)
(w.r.t. d = 1) we claim that x ∈ Kp′ iff p′(x) ≥ 0 and at most one xi < 0 with
the rest xj ≥ 0 for i 6= j (follows from Corollary 6.4). We are going to construct
a representation of the dual cone to Kp′ = KEn−1 using this characterization.
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Figure 2: KEn−1 cone decomposition in R3

Proposition 6.7. If K ⊆ Rn is a cone admitting a decomposition into (smaller)
cones {Ki}i∈I , K =

⋃
i∈I Ki, then its dual cone satisfies K∗ =

⋂
i∈I Ki

∗.

Proof. Straightforward from the definition of the dual cone.

We form a (disjoint-interior) partitioning for Kp′ in the following manner:
Kp′ = (

⋃
i=1...n Ki

p′)
⋃

K0
p′ where Ki

p′ = {x ∈ Rn : xi ≤ 0, xj ≥ 0, j 6= i, p′(x) ≥
0} and K0

p′ = Kp = (Kp)∗ = Rn
+, claiming that each of the Ki

p′ admits SDR
representation (with strictly-feasible solution), see Figure 2. Based on Proposi-
tion 4.3 it is now easy to reconstruct the dual cone.

It is left to demonstrate how to represent each Ki
p′ via linear matrix inequal-

ity (LMI). We show how to do this for K1
p′ .

Consider

W1(x) := Diag(x)− x1(1 · (1, 0, . . . , 0)T + (1, 0, . . . , 0) · 1T )

The condition of the form W1(x) º 0 is clearly an LMI. Recall that for a real
symmetric matrix to be positive semi-definite it is necessary and sufficient that
all its principal minors have nonnegative determinants. Proceed by evaluating
these determinants from the bottom-right corner to get xj , j = 2, . . . , n, x1 ≤ 0
and −x1p

′(x) ≥ 0, implying p′(x) ≥ 0. (To see why det(W1(x)) = −x1p
′(x),

evaluate this determinant using algebraic complements of the first row, see [9].)
Clearly, strict feasibility for this LMI is insured as well (e.g., take x2 = x3 =

· · · = xn = 1, x1 < 0, with |x1| small enough). So Corollary 4.3 can be applied
to get (K1

p′)
∗ = {x ∈ Rn : W1(x) º 0}∗ as an SDR set.

Finally, to get the representation of the dual cone to KEn−1(·) take the in-
tersection of the dual cones corresponding to its components: (KEn−1(·))

∗ =
(∩i=1,...,n{x ∈ Rn : Wi(x) º 0}∗) ∩ (Rn

+)∗.
To illustrate this idea we consider the derivation of (KEn−1(·))

∗ in R3, which
is, perhaps, not the most exciting example (it is just a quadratic cone after all)
but is quite an illustrative one (it is easy to appeal to geometric interpretation
of the results).
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The dual cone is given by (∩i=1,...,n{x ∈ Rn : Wi(x) º 0}∗)∩(Rn
+)∗. Consider

{x ∈ Rn : W1(x) º 0} first:

W1(x) :




x1

x2

x3


 7→



−1 −1 −1
−1
−1


 x1 +




0
1

0


 x2 +




0
0

1


 x3

= A1x1 + A2x2 + A3x3

Using Proposition 4.3 we get the following representation of {x ∈ Rn : Wi(x) º
0}∗:

〈


−1 −1 −1
−1
−1


 , Λ1〉 = y1, 〈




0
1

0


 ,Λ1〉 = y2, 〈




0
0

1


 , Λ1〉 = y3,

Λ1 º 0

and similarly we can derive the expressions for {x ∈ Rn : W2(x) º 0}∗ (with Λ2)
and {x ∈ Rn : W3(x) º 0}∗ (with Λ3). We reconstruct the dual cone to KE2(·) as
a collection of three sets of LMI’s each corresponding to {x ∈ Rn : Wi(x) º 0}∗
(with the same y in all of them, i = 1, 2, 3). Note that there is no need to further
restrict ourselves to y ∈ R3

+ since this is already implied by the constraints.
An interesting question that remains unanswered is: “How would one get the

(complete) representation of the original cone KE2(·) in terms of LMI’s ?”. To
do this we take the dual of K∗

En−1(·). Firstly, let us switch from the image of a
positive semi-definite cone to its affine slice in each of the {x ∈ Rn : Wi(x) º 0}∗,
i = 1, . . . , n. Starting with {x ∈ Rn : W1(x) º 0}∗, fixing a basis in S3 to be

{Bi}6i=1 =








1 0 0
0 0 0
0 0 0


 ,




0 1 0
1 0 0
0 0 0


 ,




0 0 1
0 0 0
1 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 1
0 1 0


 ,




0 0 0
0 0 0
0 0 1








we can write (substituting Λ1 =
∑6

j=1 Bjλ1j) 〈Ai,Λ1〉 = yi ⇔ 〈Ai,
∑6

j=1 Bjλ1j〉 =
yi ⇔

∑6
j=1〈Bj , Ai〉λ1j = yi to get



−y1 − 2(λ12 + λ13) λ12 λ13

λ12 y2 λ15

λ13 λ15 y3


 º 0

for y ∈ (
K1

p′
)∗, and similarly for {x ∈ R3 : W2(x) º 0}∗, {x ∈ R3 : W2(x) º 0}∗.

Now we can apply the same procedure to take the dual of the dual cone to get
the primal cone itself (note again that the resulting LMI is strictly feasible, for
example, take y = 1,−1/2 < λi,j < −1/3, ∀i, j). Writing the constraints corre-
sponding to K∗

En−1
in the form

∑3
i=1 yiÃi+

∑3
j=1(λj2B̃j2+λj3B̃j3+λj5B̃j5) º 0,
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we obtain

µ1,11 µ1,11 µ1,11

µ1,11 µ1,22

µ1,11 µ1,33

µ2,11 µ2,11 µ2,11

µ2,11 µ2,22

µ2,11 µ2,33

µ3,11 µ3,11 µ3,11

µ3,11 µ3,22

µ3,11 µ3,33

º 0

x1 = µ1,33 + µ2,33 − µ3,11

x2 = µ1,22 − µ2,11 + µ3,22

x3 = −µ1,11 + µ2,22 + µ3,33

for x ∈ KE2 , where the off-diagonal blocks are not necessarily zeroes anymore,
but w.lo.g. may be assumed 0 (use the criterion for a matrix to be º 0 using
the minors).

This constraint is decomposable into three independent LMI’s (correspond-
ing to these three blocks) which are further assembled together via affine con-
straints in order to get the primal variables x1, x2, x3. There is a simple inter-
pretation for this set of constraints. Observe that each of the blocks (i = 1, 2, 3)




µi,11 µi,11 µi,11

µi,11 µi,22

µi,11 µi,33


 º 0

corresponds to Ki
p′ = {x ∈ Rn : xi ≤ 0, xj ≥ 0, j 6= i, En−1(x) ≥ 0} = {x ∈

Rn : Wi(x) º 0} but with x’s now renamed into ±µ’s. Therefore, each block
describes just one of these “slabs”. The remaining linear constraints

x1 = µ1,33 + µ2,33 − µ3,11

x2 = µ1,22 − µ2,11 + µ3,22

x3 = −µ1,11 + µ2,22 + µ3,33

are building a convex combination of these slabs (KEn−1(·) is a cone so we can
assume that the points have unit weight). That is, any point in Kp′ can be
obtained as a convex combination of the points in Ki

p′ = {x ∈ Rn : xi ≤ 0, xj ≥
0, j 6= i, En−1(x) ≥ 0} = {x ∈ Rn : Wi(x) º 0}, i = 1, . . . , n (see Figure 2).

Remark 6.8 (Concluding comments). It should be noted that since the dual
cone K∗

En−1
was constructed as an affine section of Sn2

+ , this approach provides
us with a way to construct a self-concordant barrier for the dual cone as well.
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