
McMaster University

Advanced Optimization Laboratory

McMaster University

Advanced Optimization Laboratory

Title:

A computational framework for determining square-maximal
strings

Authors:

Antoine Deza, Frantisek Franek, and Mei Jiang

AdvOL-Report No. 2011/5

December 2011, Hamilton, Ontario, Canada

Title:

Small degenerate simplices
can be bad for simplex methods

Authors:

Shinji Mizuno, Noriyoshi Sukegawa, and Antoine Deza

AdvOL-Report No. 2016/1

July 2016, Hamilton, Ontario, Canada



Small degenerate simplices
can be bad for simplex methods

Shinji Mizuno, Noriyoshi Sukegawa, and Antoine Deza

July 2016

Abstract

We show that the simplex method with Dantzig’s pivoting rule
may require an exponential number of iterations over two highly de-
generate instances. The feasible region of the first instance is a full
dimensional simplex, and a single point for the second one. In addi-
tion, the entries of the constraint matrix, the right-hand-side vector,
and the cost vector are {0, 1, 2}-valued. Those instances, with few ver-
tices and small input data length, illustrate the impact of degeneracy
on simplex methods.
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1 Introduction

hile simplex methods are highly efficient in practice for solving linear opti-
mization, many instances requiring an exponential number of iterations are
known. One such instance is the Klee-Minty cube [5] and its variants. In
dimension m, the simplex method visits all the 2m non-degenerate basic fea-
sible solutions corresponding to the vertices of the Klee-Minty cube. Thus,
the simplex method requires 2m − 1 iterations.

In this note, we essentially perturb the right-hand-side of a Klee-Minty
cube considered by Kitahara and Mizuno [3, 4] so that the feasible region
becomes a full dimensional simplex. Further perturbing the right-hand-side,
the feasible region is reduced to a zero-dimensional simplex, i.e. a single
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point. Let (LO0) denote the linear optimization instance considered by Ki-
tahara and Mizuno, and (LO1) and (LO2) the instances obtained by per-
turbing the right-hand-side of (LO0). We observe that the analysis of Ki-
tahara and Mizuno, showing that (LO0) requires 2m − 1 iterations, can be
adapted to show that (LO1) and (LO2) require, respectively, 2m−1 + 1 and
2m − 1 iterations. For both (LO1) and (LO2), an exponential number of it-
erations are performed at a single degenerate vertex. In addition, the entries
of the constraint matrix, the right-hand-side vector, and the cost vector are
{0, 1, 2}-valued for both (LO1) and (LO2). Those instances, with few vertices
and small input data length, illustrate the impact of degeneracy on simplex
methods, and could be of instructional interest.

In a 1980 technical report, reprinted as [8] with a postscript by Avis [1],
Zadeh introduced and studied instances requiring an exponential number of
iterations whose entries are small integers. In addition, Zadeh pointed out
that his constructions, and many others requiring an exponential number of
iterations, occur in so-called deformed products of polytopes. For more details
about pivot based algorithms, instances requiring an exponential number of
iterations for simplex methods, and related results, we refer to the survey of
Meunier [6], Terlaky and Zhang [7], and Ziegler [9], and references therein.

2 Two small degenerate linear optimization

instances

The linear optimization instance (LO0) considered by Kitahrara and Mizuno
in [3, 4], with x ∈ Rm, is:

maximize
m∑
i=1

xi

subject to x1 ≤ 1

2
k−1∑
i=1

xi + xk ≤ 2k − 1 for k = 2, 3, . . . ,m

x ≥ 0

(LO0)

The feasible region of (LO0) is a Klee-Minty cube and the simplex method
with Dantzig’s pivoting rule visits all its vertices. Thus, 2m − 1 iterations
may be required to solve the standard form of (LO0) as observed by Kitahara



3

and Mizuno [3, 4].
The first small linear optimization instance (LO1) is obtained from (LO0)

by multiplying the first inequality of (LO0) by 2, and setting to 2 the right-
hand-side of the next m− 1 inequalities:

maximize
m∑
i=1

xi

subject to 2x1 ≤ 2

2
k−1∑
i=1

xi + xk ≤ 2 for k = 2, 3, . . . ,m

x ≥ 0

(LO1)

One can check that the first m− 1 inequalities of (LO1) are redundant, and
that the feasible region of (LO1) is the simplex obtained by intersecting the
positive orthant with the half-space defined by 2

∑m−1
i=1 xi + xm ≤ 2. The

vertices of this simplex are

{0, e1, e2, . . . , em−1, 2em}

where ei denotes the i-th unit vector of Rm. Note that e1 is a highly degen-
erate vertex of degree 2m− 1 as it satisfies with equality all the inequalities
of (LO1) except x1 ≥ 0. The standard form associated to (LO1), with slack
variable y ∈ Rm, is:

maximize
m∑
i=1

xi

subject to 2x1 + y1 = 2

2
k−1∑
i=1

xi + xk + yk = 2 for k = 2, 3, . . . ,m

x ≥ 0, y ≥ 0

(LO∗
1)

The second small degenerate linear optimization instance (LO2) is obtained
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from (LO0) by setting to 0 the right-hand-side of the first m inequalities:

maximize
m∑
i=1

xi

subject to x1 ≤ 0

2
k−1∑
i=1

xi + xk ≤ 0 for k = 2, 3, . . . ,m

x ≥ 0

(LO2)

One can check that the feasible region of (LO2) is reduced to the origin 0
which forms the unique and highly degenerate optimal point. The standard
form associated to (LO2) is:

maximize
m∑
i=1

xi

subject to x1 + y1 = 0

2
k−1∑
i=1

xi + xk + yk = 0 for k = 2, 3, . . . ,m

x ≥ 0, y ≥ 0

(LO∗
2)

Proposition 2.1.

(i) For both (LO1) and (LO2), the entries of the constraint matrix, the
right-hand-side vector, and the cost vector are {0, 1, 2}-valued.

(ii) The feasible region of (LO1) is a full dimensional simplex including
a highly degenerate vertex, and that of (LO2) is reduced to a highly
degenerate point.

(iii) For (LO∗
1), starting from (x,y) = (0,2), the simplex method with

Dantzig’s pivoting rule visits exactly 3 distinct vertices, and makes
2m−1 + 1 iterations, including 2m−1 − 1 at a highly degenerate vertex.

(iv) For (LO∗
2), starting from (x,y) = (0,0), the simplex method with

Dantzig’s pivoting rule visits exactly 1 vertex, and makes 2m − 1 it-
erations at this highly degenerate vertex.
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3 Proof of Proposition 2.1

The first two items of Proposition 2.1 restate the features of (LO1) and
(LO2). The third item deals with the behaviour of the simplex method
with Dantzig’s pivoting rule for (LO∗

1). We first outline the simplex pivot
sequences for (LO∗

1) with m = 3; that is:

maximize x1 +x2 +x3

subject to 2x1 +y1 = 2
2x1 +x2 +y2 = 2
2x1 +2x2 +x3 +y3 = 2

x1, x2, x3, y1, y2, y3 ≥ 0

Setting y1, y2, and y3 as initial basic variables, the first dictionary, or tableau,
is:

z = x1 +x2 +x3

y1 = 2 −2x1

y2 = 2 −2x1 −x2

y3 = 2 −2x1 −2x2 −x3

where nonnegativity conditions x ≥ 0 and y ≥ 0 are omitted, and z rep-
resents the objective function. The reduced costs, i.e. the coefficients of
nonbasic variables x1, x2, and x3 in z, are positive. Thus, dual feasibility is
not satisfied and the dictionary is not optimal.

The adopted pivoting rule is Dantzig’s rule, and the minimum index rule
is used in case of ties as follows:

The entering variable should be a nonbasic variable with the largest re-
duced cost. If two or more nonbasic variables have the largest reduced
cost, the one with the smallest index is chosen.

The leaving variable should be basic variable reaching 0 as the entering
variable increases. If two or more basic variables reach 0 simultane-
ously, the one with the smallest index is chosen.

Applying this pivoting rule to the first dictionary, x1 is the entering variable,
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y1 is the leaving one, and the second dictionary is:

z = 1 −y1
2

+x2 +x3

x1 = 1 −y1
2

y2 = y1 −x2

y3 = y1 −2x2 −x3

x2 is the next entering variable, y2 the leaving one, and the third dictionary
is:

z = 1 +y1
2
−y2 +x3

x1 = 1 −y1
2

x2 = y1 −y2
y3 = −y1 +2y2 −x3

x3 is the next entering variable, y3 the leaving one, and the fourth dictionary
is:

z = 1 −y1
2

+y2 −y3
x1 = 1 −y1

2

x2 = y1 −y2
x3 = −y1 +2y2 −y3

y2 is the next entering variable, x2 the leaving one, and the fifth dictionary
is:

z = 1 +y1
2
−x2 −y3

x1 = 1 −y1
2

y2 = y1 −x2

x3 = y1 −2x2 −y3
y1 is the next entering variable, x1 the leaving one, the sixth dictionary is:

z = 2 −x1 −x2 −y3
y1 = 2 −2x1

y2 = 2 −2x1 −x2

x3 = 2 −2x1 −2x2 −y3

which is optimal as all reduced costs are nonpositive, and the optimal value
is 2.

The observed pivot sequence starts at the initial basic feasible solution
(x,y) = (0,2) with an objective value of 0. The highly degenerate second
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basic feasible solution is (x,y) = (e1,0) with an objective value of 1. The
following 22 − 1 basic feasible solutions remain at the same vertex with an
objective value of 1 until the penultimate iteration. The last iteration reaches
the optimal basic feasible solution (x,y) = (2e3,2− 2e3) with an objective
value of 2. This sequence of 5 simplex pivots is summarized in (S3

1) where
2 square blocks are highlighted to layout the recursive pattern followed by
the sequence (Sm

1 ) of the 2m−1 simplex pivots required for m ≥ 3. The
sequence (Sm

1 ) is described in Proposition 3.1 which implies the third item
of Proposition 2.1

iteration: 0 1 2 3 4 5

basic variables:
y1 x1 x1 x1 x1 y1
y2 y2 x2 x2 y2 y2
y3 y3 y3 x3 x3 x3

(S3
1)

Proposition 3.1. For m ≥ 3, the sequence (Sm
1 ) of the 2m−1 + 1 pivots fol-

lowed by the simplex method with Dantzig’s pivoting rule for (LO∗
1) satisfies:

(i) the basic variables at iteration 0 are {y1, y2, . . . , ym},

(ii) the basic variables at iteration 2m−1 + 1 are {y1, y2, . . . , ym−1, xm},

(iii) ym remains a basic variable till iteration 2m−2 where it is replaced by
xm which remains a basic variable till iteration 2m−1 + 1,

(iv) for iterations 1 to 2m−2, the basic variables are obtained by adding ym
to the basic variables of (Sm−1

1 ),

(v) for iterations 2m−2 + 1 to 2m−1, the basic variables are obtained by
adding xm to the basic variables corresponding to the iterations 2m−2

to 1 of (Sm−1
1 ).

Consequently, starting from the initial basic feasible solution (x,y) = (0,2)
with an objective value of 0, the pivot sequence first reaches the highly degen-
erate second basic feasible solution (x,y) = (e1,0) with an objective value of
1. The following 2m−1 − 1 basic feasible solutions remain at the same vertex
with an objective value of 1 until the penultimate iteration. The last itera-
tion reaches the optimal basic feasible solution (x,y) = (2em,2− 2em) with
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an objective value of 2. Thus, while visiting exactly 3 vertices, the simplex
method with Dantzig’s pivoting rule solves (LO∗

1) by 2m−1 + 1 iterations —
including 2m−1 − 1 iterations at a highly degenerate vertex.

Proof. Since the proof can essentially be adapted from the analysis of Kita-
hara and Mizuno [4] showing that (LO0) requires 2m−1 iterations, we simply
illustrate the recursive pattern from (Sm

1 ) to (Sm+1
1 ) for m = 2 and 3. One

can check that (S2
1) is as follows.

iteration: 0 1 2 3

basic variables:
y1 x1 x1 y1
y2 y2 x2 x2

(S2
1)

Note that the first highlighted block of (S3
1) corresponds to the iterations 1

and 2 of (S2
1), and that the second highlighted block of (S3

1) is the mirror
image of the first highlighted block. Then, one can check that (S4

1) is as
follows.

iteration: 0 1 2 3 4 5 6 7 8 9

basic variables:

y1 x1 x1 x1 x1 x1 x1 x1 x1 y1
y2 y2 x2 x2 y2 y2 x2 x2 y2 y2
y3 y3 y3 x3 x3 x3 x3 y3 y3 y3
y4 y4 y4 y4 y4 x4 x4 x4 x4 x4

(S4
1)

Note that the first highlighted block of (S4
1) corresponds to the iterations

1,2,3 and 4 of (S3
1), and that the second highlighted block of (S4

1) is the
mirror image of the first highlighted block.

The fourth item of Proposition 2.1 deals with the behaviour of the simplex
method with Dantzig’s pivoting rule for (LO∗

2). We first outline the simplex
pivot sequences for (LO∗

2) with m = 2; that is:

maximize x1 +x2

subject to x1 +y1 = 0
2x1 +x2 +y2 = 0

x1, x2, y1, y2 ≥ 0
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Setting y1 and y2 as initial basic variables, the first dictionary is:

z = x1 +x2

y1 = −x1

y2 = −2x1 −x2

where nonnegativity conditions x ≥ 0 and y ≥ 0 are omitted, and z repre-
sents the objective function. While (x,y) = (0,0) corresponds to an optimal
vertex, the reduced costs, i.e. the coefficients of nonbasic variables x1 and x2

in z, are positive. Thus, dual feasibility is not satisfied and the dictionary is
not optimal. As for (LO∗

1), the adopted pivoting rule is Dantzig’s rule, and
the minimum index rule is used in case of ties.

Applying the pivoting rule to the first dictionary, x1 is the entering vari-
able, y1 is the leaving one, and the second dictionary is:

z = −y1 +x2

x1 = −y1
y2 = 2y1 −x2

x2 is the next entering variable, y2 the leaving one, and the third dictionary
is:

z = y1 −y2
x1 = −y1
x2 = 2y1 −y2

y1 is the next entering variable, x1 the leaving one, and the fourth dictionary
is optimal as all the reduced costs are nonpositive, and the optimal value is
0:

z = −x1 −y2
y1 = −x1

x2 = −2x1 −y2
The observed pivot sequence starts at the initial basic feasible solution (x,y) =
(0,0) with an objective value of 0. The following 22 − 1 basic feasible solu-
tions remain at the same vertex with an objective value of 0 until reaching
an optimal basis for the same solution (x,y) = (0,0). Using an approach
similar to the one used for the third item of Proposition 2.1, one can derive
Proposition 3.2 which implies the fourth item of Proposition 2.1.
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Proposition 3.2. For m ≥ 3, the sequence (Sm
2 ) of the 2m − 1 pivots fol-

lowed by the simplex method with Dantzig’s pivoting rule for (LO∗
2) satisfies:

(i) the basic variables at iteration 0 are {y1, y2, . . . , ym},

(ii) the basic variables at iteration 2m − 1 are {y1, y2, . . . , ym−1, xm},

(iii) ym remains a basic variable till iteration 2m−1 − 1 where it is replaced
by xm which remains a basic variable till iteration 2m − 1,

(iv) for iterations 0 to 2m−1 − 1, the basic variables are obtained by adding
ym to the basic variables of (Sm−1

2 ),

(v) for iterations 2m−1 to 2m−1, the basic variables are obtained by adding
xm to the basic variables corresponding to the iterations 2m−1 − 1 to 0
of (Sm−1

2 ).

Consequently, starting from the initial basic feasible solution (x,y) = (0,0)
with an objective value of 0, the following 2m − 1 basic feasible solutions
remain at the same vertex with an objective value of 0 until reaching an op-
timal basis for the same solution (x,y) = (0,0). Thus, while visiting exactly
one vertex, the simplex method with Dantzig’s pivoting rule solves (LO∗

2) by
2m − 1 iterations at a highly degenerate vertex.

Proof. As for the proof of Proposition 3.1, we simply illustrate the recursive
pattern from (Sm

2 ) to (Sm+1
2 ) for m = 2. One can check that (S2

2) and (S3
2)

are as follows.
iteration: 0 1 2 3

basic variables:
y1 x1 x1 y1
y2 y2 x2 x2

(S2
2)

iteration: 0 1 2 3 4 5 6 7

basic variables:
y1 x1 x1 y1 y1 x1 x1 y1
y2 y2 x2 x2 x2 x2 y2 y2
y3 y3 y3 y3 x3 x3 x3 x3

(S3
2)
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Note that the first highlighted block of (S3
2) corresponds to the iterations

0, 1, 2, and 3 of (S2
2), and that the second highlighted block of (S3

2) is the
mirror image of the first highlighted block.
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