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Abstract

A balanced double square in a string x consists of two squares starting

in the same position and of comparable lengths. We present a unique fac-

torization of the longer square into primitive components refereed to as the

canonical factorization and analyze its properties. In particular, we examine

the inversion factors and the right and left inversion subfactors. All three

substrings are collectively referred to as rare factors as they occur only twice

in a significant portion of the larger square. The inversion factors were es-

sential for determining the classification of mutual configurations of double

squares and thus providing the best-to-date upper bound of 11n/6 for the

number of distinct squares in a string of length n in [8] by Deza, Franek,

and Thierry. The right and left inversion subfactors have the advantage of

being half the length of the inversion factors, thus providing a stronger dis-

crimination property for a possible third square. This part of the thesis was

published in [2] by Bai, Franek, and Smyth.

The canonical factorization and the right and left inversion subfactors are

used to formulate and prove a significantly stronger version of the New Peri-
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odicity Lemma [9] by Fan, Puglisi, Smyth, and Turpin, 2006, that basically

restricts what kind of a third square can exists in a balanced double square.

This part of the thesis was published in [3] by Bai, Franek, and Smyth.

The canonical factorization and the inversion factors are applied to for-

mulate and prove a stronger version of the Three Squares Lemma [7] by

Crochemore and Rytter. This part of the thesis was published in [1] by Bai,

Deza, and Franek.
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Chapter 1

Introduction

1.1 Background of the research

The structural properties of several squares starting in the same proximity

have been studied by researchers interested in two major problems concerning

periodicities in strings: the maximum number of runs and the maximum

number of distinct squares in a string. In 1995, Crochemore and Rytter

[7] described the relationship among the lengths of three distinct squares

starting at the same position in a string in the Three Squares Lemma:

Let u2 6= v2 be proper prefixes of w2 and let u, v, and w be primitive,

then |u|+|v| < |w|.

In [10], Fraenkel and Simpson observed that in fact a slightly different version

was proven as only the primitivness of u was actually used in the proof, they

also gave a counterexample for the sharp inequality: u = aba, v = abaab
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and w = abaababa. Thus, they used the lemma in this form:

Let u2 and v2 be prefixes of w2 so that u is primitive and |u| < |v| < |w|.

Then |u|+ |v| ≤ |w|.

and used it for obtaining a bound of 2|x| for the number of distinct squares

in a string x. We will discuss the Three Squares Lemma in more details in

Chapter 4.

In 2006, Fan et al. [9] considered a case of two squares starting at the same

position with a third square possibly offset some distance to the right; they

presented the New Periodicity Lemma describing conditions under which the

third square could not exist. Since that time there has been considerable work

done [4, 11, 14, 16] in an effort to specify more precisely the combinatorial

structure of a string in the neighbourhood of such two squares. We will

discuss the New Periodicity Lemma in more details in Chapter 3.

In [8], the canonical factorization of two rightmost squares starting at

the same position, which is referred there as an FS-double square, proved

essential for improving the Frankel-Simpson upper bound for the maximum

number of distinct squares in a string x to 11
6
|x|.

This was the motivation of the research described here and it lead to three

publications that anchor this thesis: Two squares canonical factorization [2],

The New Periodicity Lemma Revisited [3], and On a lemma of Crochemore

and Rytter [1].

In the first of the publications, Two squares canonical factorization [2],

the canonical factorization for all balanced double squares is analyzed. In

6
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a sense, it was a surprising result as no strong assumptions such as primi-

tiveness of the squares or being the rightmost occurrences, are needed. This

result is described in Chapter 2.

The realization that the inversion factors of the canonical factorization

are such prominent structures as to completely remove the need for using

the Three Squares Lemma for improving the upper bound for the maximum

number of distinct squares in [8], lead to a renewed interest in the structure

of three squares starting at the same proximity.

The New Periodicity Lemma [9] has a complicated proof as the combina-

torial structure of three squares two of which start at the same position is

quite forbidding. However, since when the two squares starting at the same

position form a balanced double square can be dealt with via the inversion

factors imposed by the canonical factorization, we embarked on the research.

It required a refinement of the notion of the inversion factor, but lead to a new

theorem with significantly reduced assumptions about the squares: originally,

the smallest square was required to be regular – a very stringent requirement,

and the bigger square was required to be primitive. This research and results

lead to the publication The New Periodicity Lemma Revisited [3] and it is

described in Chapter 3.

The canonical factorization also lead to a more straightforward and stream-

lined proof of the Three Squares Lemma with weaker assumptions as it deals

simply with the cases when two smallest or the two biggest squares form a

balanced double square. This research and results lead to the publication
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On a lemma of Crochemore and Rytter [1] and are described in Chapter 4.

The thesis is concluded with Chapter 5 containing a conclusion and ideas

for future research.

1.2 Preliminaries

Definition 1.1. An alphabet Σ is a non-empty set of elements referred to

as symbols or letters. Frequently, it is required to be finite, but it can also be

infinite. A string x over an alphabet Σ is a contiguous sequence of symbols

drawn from Σ. A string without any symbol is called the empty string and

denoted by ε. A string is also often called a word.

Definition 1.2. The alphabet of a string is the set of all of the symbols that

occur in that string.

string Example Non-example
aabba {a, b} {a, c}
12445 {1, 2, 4, 5} {3}
abcca {a, b, c} {a, b}
ab+ {a, b} {a}

123323 {1, 2, 3} {1, 2, 3, 4, ...}

Table 1.1: Examples and Non-examples of alphabet of a string

Definition 1.3. The length of a finite string x is the number of symbols

it is composed of, denoted as |x|. The empty string has length zero. A

finite string x with n symbols can be represented as an array x[1..n] or as a

sequence x[1]x[2]...x[n].
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one-sided infinite string bi-infinite string
has a first element, no final element neither a first nor a final element

aab... ...aab...
...bbbb ...bbbbb...

Table 1.2: Examples of infinite strings

Definition 1.4. Concatenation is a basic operation of strings that joins two

strings x and y together into one, which is denoted in the order that the

two strings are concatenated as xy. For instance, xy represents a string

that is the concatenation of string x followed by string y; that is, xy =

x[1][2]...x[i]y[1]y[2]...y[j], where x = x[1...i] and y = y[1...j] and i, j ≥ 1.

Definition 1.5. If a string x = uvw, where u, v, and w are strings, then

u (respectively, v, w) is said to be a prefix (respectively, substring, suffix)

of x if 0 ≤ |u| ≤ |x| (respectively, 0 ≤ |v| ≤ |x|, 0 ≤ |w| ≤ |x|);

a proper prefix (respectively, proper substring, proper suffix) if 0 < |u| < |x|

(respectively, 0 < |v| < |x|, 0 < |w| < |x|). A substring is also called a factor

or subword.

string Example Non-example
aabba a, aa, aab, aabb, ab, abb, abba, b, bb, bba, ba ε
12445 1, 12, 124, 1244, 2, 24, 244, 2445, 4, 44, 445, 45, 5 12445
abcca a, ab, abc, abcc, b, bc, bcc, bcca, c, cc, cca, ca ccc
abbb a, ab, abb, b, bb, bbb aba
323 3, 32, 2, 23 3234

Table 1.3: Examples and Non-examples of proper substrings of a string

Definition 1.6. The symbol Σ∗ denotes the set of all finite strings over the

alphabet Σ, including the empty string ε.
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Definition 1.7. An order (or ordering) ≺ of an alphabet Σ is a transitive,

reflexive, and antisymmetric relation ≺ over the alphabet that is total, i.e.

that for every pair of distinct symbols x, y ∈ Σ, either x ≺ y or y ≺ x. Thus,

the alphabet can be diagrammed as a line of symbols.

Definition 1.8. The lexicographic ordering ≺ is an ordering of Σ∗ induced

by the ordering ≺ of the alphabet Σ: For every pair of strings x = x0x1...xk−1

and y = y0y1...yl−1 in Σ∗, x ≺ y if there is an index i ≥ 0 such that i < k

and i < l and xi ≺ yi and xj = yj for all 0 ≤ j < i ; or if l > k and for all

0 ≤ j < k we have xj = yj.

order lexicographic order
a ≺ b ≺ c ab ≺ abb ≺ abbc ≺ abc ≺ acbc ≺ cbc
a ≺ c ≺ b acbc ≺ ab ≺ abc ≺ abb ≺ abbc ≺ cbc
b ≺ a ≺ c ab ≺ abb ≺ abbc ≺ abc ≺ acbc ≺ cbc
b ≺ c ≺ a cbc ≺ ab ≺ abb ≺ abbc ≺ abc ≺ acbc
c ≺ a ≺ b cbc ≺ acbc ≺ ab ≺ abc ≺ abb ≺ abbc
c ≺ b ≺ a cbc ≺ acbc ≺ ab ≺ abc ≺ abb ≺ abbc

Table 1.4: lexicographic order of strings ab, abb, abc, cbc abbc, acbc, over
alphabet {a, b, c}

Observation 1.9. For an alphabet of size n, there are C1
n · C1

n−1 · C1
n−2 ·

C1
n−3 ... · 1 = n · (n− 1) · (n− 2) · (n− 3) · ... · 3 · 2 · 1 = n! different orderings.

I.e. there are as many different orderings of Σ∗ as there are permutations of

|Σ|.
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Definition 1.10. A string x is primitive if there are no string u and an

integer k ≥ 2 so that x = uk = uu . . .u︸ ︷︷ ︸
k times

. For every string x there is

a unique smallest string u so that x = uk for some integer k ≥ 1; u is

necessarily primitive and is called the primitive root of x.

Definition 1.11. For a concatenation uk, k ≥ 2, u[1] denotes the first oc-

currence of u in uk, u[2] denotes the second occurrence of u in uk, ..., u[k]

denotes the k-th occurrence of u in uk.

Example non-Example
ab abab
a aaaa
aab aabaab
abac acac
aabca abaabaaba

Table 1.5: Examples and Non-examples of primitive strings

Definition 1.12. A repeat is a collection of identical substrings of x[1..n]

described by u = x[i1..i1 + p− 1] = x[i2..i2 + p− 1] = ... = x[iq..iq + p− 1],

where 1 ≤ i1 < i2 < ... < iq ≤ n, q ≥ 2, and p ≥ 1. u is called the generator

(or the root) of the repeat.

Definition 1.13. A repetition is a tandem repeat; that is, for every two

consecutive identical substrings in the repeat, the gap between their starting

positions is equal to the size of the generator. A repetition with generator u

repeating q times (q an integer) can be presented as uq, where u is a non-

empty string, and q ≥ 2. The integer value |u| is called the period and q the

exponent or power of the repetition.

11
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Example Non-example
abab ab
aaaa a
abaaba abaabaa
aabaab baabaab
abcabcabc cabcabcabcab

Table 1.6: Examples and Non-examples of repetitions

Definition 1.14. A square is a repetition with power of 2. A cube is a

repetition with power 3.

Example Non-example
abab ab
aaaa a
abaaba aabaaba
aa aaa

aabaaaba aabab

Table 1.7: Examples and Non-examples of squares

Example Non-example
ababab abab
aaaaaa aa
bbb abaaba

abcabcabc abc
aabaabaab aabab

Table 1.8: Examples and Non-examples of cubes

Definition 1.15. If u is primitive, then the square u2 is called primitively

rooted.

The square u2 is regular if no prefix of u is a square.

12
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Example Non-example
(ab)ab (abab)abab
(a)a (aa)aa

(abc)abc (abcabc)abcabc
(aba)aba (aaa)aaa
(aab)aab (bbbb)bbbb

Table 1.9: Examples and Non-examples of primitively rooted squares – ’()’
shows the root of the square

Definition 1.16. If a repetition uq = x[s..s+ qp− 1] where p = |u|, can be

extended by another copy of u to the left of x, that is, x[s − p..s − 1] = u,

then we say the repetition can be extended to the left. A repetition is called

a left-maximal repetition if it cannot be extended to the left. Similarly, if

we cannot extend by another copy of u to the right, then the repetition is a

right-maximal repetition . A maximal repetition refers to a repetition that

can be extended neither to the left nor to the right.

string Example
x = cccababccc ccc(abab)ccc

x = ababaaaababa abab(aaaa)baba
x = bbabaababb bb(abaaba)bb

x = abaaabaabbab aba(aabaab)bab
x = abbabcabccba abb(abcabc)cba

Table 1.10: Examples of maximal repetitions in a string x – ’()’ shows the
maximal repetition
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Non-example
left extendable: cccb(abab)cccc

ight extendable: abab(aaaa)abab
two-side extendable : aaa(abaaba)aaa

right extendable: aba(aabaab)aba
two-side extendable : cbc(abcabc)aba

Table 1.11: Non-examples of maximal repetitions – ’()’ shows the repetition

Definition 1.17. A run in a string x = x[1..n] starting at a position s,

ending at a position e with a period p is a substring x[s..e] so that

1. x[s..e] = x[s..s+ p− 1]rt where the integer r ≥ 2 and t called tail is a

proper prefix of the root x[s..s+ p− 1];

2. the root x[s..s+ p− 1] is primitive;

3. the root x[s..s + p − 1] cannot be shifted left, i.e. either s = 1 or

x[s− 1] 6= x[s+ p− 1];

4. x[e − p + 1..e] cannot be shifted right, i.e. either e = n or x[e + 1] 6=

x[e− p+ 1].

A run can thus be encoded by a triple r = (s, e, p) where s, e, and p

specify the starting position, the ending position, and the period of the run,

respectively. Note that the run without its tail, e.i. x[s..s + p − 1]r, is a

maximal repetition, but not every maximal repetition is a run.

14
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string Example Non-example
ccababccc cc(abab)ccc ccabab(cc)c
baaaab b(aaaa)b ba(aa)ab

aaaabaabaaaa aa(aabaabaa)aa (aaa)abaabaaaa
abaabbabbab ab(aa)bbabbab abaa(bbabba)b

acaacaacabcabcac acaacaa(cabcabca)c (acaacaac)abcabcac

Table 1.12: Examples and Non-examples of runs in a string x , ’()’ shows
the run and non-run

Definition 1.18. The maximum-number-of-runs problem counts the maxi-

mum number of runs in a string, i.e. the occurrences of the runs are counted

rather than their types.

Definition 1.19. The maximum-number-of-distinct-squares problem counts

the maximum number of distinct squares in a string, i.e. the types of the

squares in the string are counted rather than their occurrences.

string square-type run-occurrence
ababcabab (ab)2 × 1 (ab)2 × 2
abababab (ab)2 × 1, (ba)2 × 1 (ab)4 × 1
aaaaaa a2 × 1 a6 × 1

Table 1.13: Examples of maximum-number-of-distinct-squares vs maximum-
number-of-runs when we only count distinct primitively rooted squares

string square-type run-occurrence
aaaabaacaabaaaa a2 × 1, (aa)2 × 1 a4 × 2, a2 × 2

aaaaaa a2 × 1, (aa)2 × 1, (aaa)2 × 1 a6 × 1
aaaa a2 × 1, (aa)2 × 1 a4 × 1

Table 1.14: Examples of maximum-number-of-distinct-squares vs maximum-
number-of-runs when we count distinct squares no matter whether their roots
are primitive or not
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Definition 1.20. The factorization or decomposition of a string is a col-

lection of disjoint substrings such that their concatenation gives the whole

string.

Definition 1.21. [Lampel-Ziv factorization]

Let x = x[1..n] be a string of length n over an alphabet Σ. The Lampel-

Ziv factorization of x is a factorization x = w1w2...wm such that each

wk, 1 ≤ k ≤ m, is either:

• a letter c ∈ Σ that does not occur in w1w2...wk−1, or

• the longest substring of x that occurs at least twice in w1w2...wk.

string L-Z factorization Non-example
aaaa a, aaa aa, aa

abaaaba a, b, a, aa, ba a, b, aaa, ba
aabaab a, a, b, aab a, a, ba, a, b
aaabcac a, aa, b, c, a, c a, a, a, b, c, a, c
abababa a, b, ababa a, b, ab, ab, a

Table 1.15: Examples and Non-examples of Lampel-Ziv factorization

Definition 1.22. The notion of right rotation is defined by induction:

• A string x is a right 1-rotation of a string y iff y = y[1..n] and x =

y[2..n]y[1], x is also denoted as R1(y).

• A string x is a right k-rotation, k ≥ 2, of a string y iff x is a right

1-rotation of z which is a right (k−1)-rotation of y, x is also denoted

as Rk(y).

16
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Similarly for left rotation.

A string x is referred to as a trivial rotation of itself. A string x is a rotation

of a string y if it is a left or right k-rotation of y for some k ≥ 1 or if x = y.

If x is a rotation of y, we may also say that x and y are conjugates or that

x is a conjugate of y.

Definition 1.23. For x = x[1..n], 1 ≤ i < j ≤ j+ k ≤ n, the string

x[i+k..j+k] is a right cyclic shift by k positions of x[i..j] if x[i] = x[j+1],

. . . , x[i+k−1] = x[j+k]. Equivalently, we can say that x[i..j] is a left cyclic

shift by k positions of x[i+k..j+k]. When it is clear from the context, we

may leave out the number of positions and just speak of a cyclic shift.

Note a run can be described as a maximal right cyclic shift of the generator

which itself cannot be left cyclic shifted; the length of the right cyclic shift

must be at least twice the length of the generator. Similarly, a ran can be

described as a maximal right shift of the leading square of the run which

itself cannot be left cyclic shifted; the right cyclic shift can be of any length,

including 0. The leading square of a run is its leftmost square.

Definition 1.24. Strings uv and vu are conjugates, written uv ∼ vu. We

also say that vu is the |u|th rotation of x, written R|u|(x), or the −|v|th

rotation of x, written R−|v|(x), while R0(x) = R−|x|(x) = x is a primitive

rotation. Similarly as for the cyclic shift, when it is clear from the context,

we may leave out the number of rotations and just speak of a rotation. Note

that all cyclic shifts are conjugates, but not the other way around.

17
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Example

In a string x = abbaababbbaabb:

bbaa is the cyclic shift of abba, and bba|a ∼ a|bba,

while abb|a ∼ a|abb, but aabb is not a cyclic shift of abba

Definition 1.25. Given strings u and v, lcp(u,v)
(
respectively, lcs(u,v)

)
denotes the length of the longest common prefix (respectively, longest com-

mon suffix) of u and v.

Definition 1.26. A string x over an ordered alphabet (A,≺) is Lyndon

w.r.t. (with respect to) ≺ iff x ≺ y for any non-trivial rotation y of x.

A string of length one is thus Lyndon, and it is referred to as trivial Lyndon

word.

Observation 1.27. Let x = x[1..n], n > 1 be a string over an ordered

alphabet (A,≺). Then the following are equivalent:

1. x is a non-trivial Lyndon word w.r.t. ≺ .

2. x[1..j − 1] ≺ x[j..n] for any 1 < j ≤ n .

3. x[1..n] ≺ x[j..n] for any 1 < j ≤ n .

4. there exists 1 < j ≤ n so that both x[1..j − 1] and x[j..n] are Lyndon.

Item 4 is the basis of the definition of the standard factorization of a Lyndon

word x: it is a pair of Lyndon words u, v so that x = uv where v is maximal

such (or, equivalently u is minimal such).

18
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Definition 1.28. A Lyndon substring x[i..j] of a string x = x[1..n] is max-

imal Lyndon substring of x if either j = n or x[i..k] is not Lyndon for any

j < k ≤ n.

A Lyndon substring x[i..j] of x is a non-extensible Lyndon substring x if

x[i..j] is a maximal Lyndon substring of xy for any y.

string Example of Lyndon factorization Non-example
abbcc a, bbcc ab, acc
aab a, ab aa, b

aaabab a, aabab aa, abab
abacc ab, acc aba, cc
aababb a, ababb aab, abb

Table 1.16: Examples and Non-examples of Standard factorization of a Lyn-
don word

The following theorem is due to the Chen, Fox, and Lyndon, [5], though

it is not stated there in this form:

Theorem 1.29. [Lyndon factorization]

For any string x over an ordered alphabet (A,≺), there is a unique factoriza-

tion of x into m factors, x = x1x2...xm, such that each factor xi, 1 ≤ i ≤ m,

is a maximal Lyndon word, and x1 � x2 � ... � xm.

string Example of Lyndon factorization Non-example
aaaa a, a, a, a aa, aa
aba ab, a a, ba

aabaab aab, aab a, abaab
abaaba ab, aab, a aba, aba
abccba abccb, a abc, cba

Table 1.17: Examples and Non-examples of Lyndon factorization

19
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The Synchronization Principle and Common Factor Lemma are impor-

tant tools for investigation of canonical factorizations, so we state them here.

Lemma 1.30 will be used in the proof of the Synchronization Principle. The

symbol | represents divides, i.e. a|b means that a divides b.

Lemma 1.30 ([17],Lemma 1.4.2). Let x be a string of length n and minimum

period π ≤ n, let j be an integer and 1 ≤ j < n. Then Rj(x) = x if and only

if x is not primitive (π < n, π | n) and π | j.

string n π j Rj(x)
bababa 6 2 4 bababa
aaa 3 1 3 aaa

Table 1.18: Example of strings with Rj(x) = x, where underlined letters are
those that were rotated

string n π j Rj(x) comment
ababa 5 5 1 babaa x is primitive, π - j , Rj(x) 6= x
ababab 6 2 3 bababa x is not primitive but π - j , Rj(x) 6= x

Table 1.19: Examples of strings with Rj(x) 6= x, where underlined letters are
those that were rotated. Moreover, when x is primitive, n = π and j < n, π
can not divide j.

Lemma 1.31 (Synchronization Principle). The primitive string x occurs ex-

actly p times in x2x
px1, where p is a nonnegative integer and x1 (respectively,

x2) is a proper prefix (respectively, proper suffix) of x.

Proof. Suppose there exists another occurrence of x except those occurrences

determined by xp, then it must start at the same position with a rotation of
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x, which means x = Rj(x) somewhere in the string. Thus x is not primitive

by Lemma 1.30, contradiction.

string x x1 x2 p comment
cabca abc a c 1 x can’t shift

ababbababbababbababb abbab abb ab 3 x can’t shift

Table 1.20: Illustrations of Synchronization Principle holding for primitive
string x, the underlined letters are occurrences of x

string x x1 x2 p comment
babbabbabbabbabbab babbab bab bab 2 x occurs 4 times > p

bababababab abab ab b 2 x occurs 5 times > p

Table 1.21: Illustrations of Synchronization Principle not holding for non-
primitive string x, the underlined letters are occurrences of x

Lemma 1.32 (Common Factor Lemma). Suppose that x and y are primitive

strings, where x1 (respectively, y1) is a proper prefix and x2 (respectively,

y2) a proper suffix of x (respectively, y). If for nonnegative integers p and q,

x2x
px1 and y2y

qy1 have a common factor of length |x|+ |y|, then x ∼ y.

Proof. First consider the special case x1 = x2 = y1 = y2 = ε, where xp, yq

have a common prefix f of length |x|+ |y|. We show that in this case x = y.

Observe that f has prefixes x and y, so that if |x| = |y|, then x = y, as

required. Therefore suppose without loss of generality that |x| < |y|. Note

that y 6= xk for any integer k ≥ 2, since otherwise y would not be primitive,

contradicting the hypothesis of the lemma.
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Hence there exists k ≥ 1 such that k|x| < |y| and (k + 1)|x| > |y|. But

since f = yx, it follows that

R|y|−k|x|(x) = x,

again by Lemma 1.30 contrary to the assumption that x is primitive. We

conclude that |x| 6< |y|, hence that |x| = |y| and x = y, as required.

y y

f

x x

Now consider the general case, where f of length |x| + |y| is a common

factor of x2x
px1 and y2y

qy1. Then x2x
px1 = ufu′ for some u and u′. If

|u| ≥ |x|, then f is a factor of x2x
p−1x1.

2
x

1
x

2
x

1
x

x x

u f ¢u

And so we can assume without loss of generality that |u| < |x|. Setting

x̃ = R|u|(x), we see that f is a prefix of x̃p.
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f

| |
( )

u
xR

x x x x

2
x

2
x

1
x

1
x

u ¢u

Similarly, by setting y2y
qy1 = vfv′, we can assume that |v| < |y|, hence

that f is also a prefix of ỹq for ỹ = R|v|(y). But this is just the special

case considered above, for which x̃ = ỹ. Since x ∼ x̃ and y ∼ ỹ, the result

follows.

string x x1 x2 p length
aabbaabbaabbaab abba ab a 3 4

string y y1 y2 p length
abbaabbaabbaabbaabbaa baab baa ab 4 4

Table 1.22: Example of x2x
px1 and y2y

qy1 having a common factor of length
|x|+ |y|, then x ∼ y. Underlined letters are the common factor.

string x x1 x2 p length
bcabcabca abc a bc 2 3

string y y1 y2 p length
cabcabcabcabc bca bc ca 3 3

Table 1.23: Example of x2x
px1 and y2y

qy1 having a common factor of length
|x|+ |y|, then x ∼ y. Underlined letters are the common factor.

Note that Lemma 1.32 could be equivalently stated in a more general

form:

Lemma 1.33. Suppose that x and y are strings where x1 (respectively, y1)

is a proper prefix and x2 (respectively, y2) a proper suffix of x (respectively,
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y). If for nonnegative integers p and q, x2x
px1 and y2y

qy1 have a common

factor of length |x| + |y|, then the primitive root x̄ of x and the primitive

root ȳ of y are conjugates.

string x x̄ x1 x2 p length
bcabcabcabcabcabcab abcabc abc ab bcabc 2 6

string y ȳ y1 y2 p length
abcabcabcabcabc cabcab cab c ab 2 6

Table 1.24: Example of the primitive root x̄ of x and the primitive root ȳ
of y being conjugates. Underlined letters are the common factor.

The Common Factor Lemma gives rise to the following useful corollary:

Lemma 1.34. Suppose that x and y are primitive strings, and that p and q

are positive integers.

(a) If xp = yq, then x = y and p = q.

(b) If x1 (respectively, y1) is a proper prefix of x (respectively, y) and

xpx1 = yqy1 for p ≥ 2, q ≥ 2, then x = y, x1 = y1 and p = q.

Proof. For (a), first consider p = 1, thus x = yq. Since x is primitive,

therefore q = 1 and x = y, as required. Similarly for q = 1. Suppose then

that p, q ≥ 2. This means that xp and yq = xp have a common factor of

length p|x| = q|y| ≥ |x|+|y|, so that by Lemma 1.32 x ∼ y. Hence |x| = |y|

and so x = y.

For (b), since again p ≥ 2, q ≥ 2, it follows as in (a) that xpx1 = yqy1

has a common factor of length at least |x|+ |y|, hence the result.
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Note that in Lemma 1.34(b) the requirement p ≥ 2, q ≥ 2 is essential.

For instance, x = aabb, x1 = aa and p = 2 yields xpx1 = aabbaabbaa,

identical to yqy1 produced by y = aabbaabba, y1 = a and q = 1 — but of

course x 6= y.
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Chapter 2

Canonical factorization of

double squares

In this chapter based on [2], we discuss the most general form of canonical

factorization of double squares. But first we need to defined precisely what

is meant by a double square.

The term double square is due to Lam, [15] and he defined it as two

rightmost occurrences of a square u2 and a square v2 starting at the same

position of a string x. Following on work of Fraenkel and Simpson [10], he

tried to obtain a better bound for the number of distinct squares by bounding

the number of double squares. In [8], such double squares are referred to

as FS-double squares, to acknowledge the pioneering work of Fraenkel and

Simpson in this field and to prevent a confusion with configurations of two

squares starting at the same position. The bounding of FS-double squares
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carried in [8] gave an improved upper bound of 11
6
|x| for the number of

distinct squares in x .

From now on in this thesis, we will use the term FS-double square for two

rightmost occurrences of squares starting at the same position, while the term

double square for us is any two squares starting at the same position. We use

the following notation: DS(u,v) indicates that the squares u2 and v2 start

at the same position and that |u| < |v|. For a double square DS(u,v), we

say that the squares u2 and v2 are proportional if |u| < |v| < 2|u| < 2|v|. If

the two squares of a double square are proportional, then the double square

is called balanced.

Lam, [15], tried to provide a taxonomy of mutual relationships of FS-

double squares, and for that purpose he described a factorization of an FS-

double square into primitive components. In [8], some important properties

of such factorization were discussed and the factorization was shown to be

unique, i.e. it is shown that every FS-double square (u,v) has a unique fac-

torization u1, u2, e1 and e2 so that u2 = (u1u2)
2 and v2 = ue1

1 u2u
e1+e2
1 u2u

e2
1

where u1 is primitive, u2 is a non-trivial proper prefix of u1, and e1, e2 are

integers so that e1 ≥ e2 ≥ 1. The term canonical factorization was used

there.

The main result of [2] is the fact that any balanced double square admits

the canonical factorization. In a sense, it was a big surprise that no additional

conditions are required. For the Three Squares Lemma, the squares were

required to be primitive, or as Fraenkel and Simpson showed, the smallest

27



Ph.D. Thesis - H Bai Computing & Software, McMaster University

one must be primitive. For the New Periodicity Lemma, the regularity of the

smallest square was required, even stronger property than primitivness. The

canonical factorization for FS-double squares was not surprising as being the

rightmost occurrence is again stronger than being primitive.

The main result of this chapter is Lemma 2.1, Two Squares Factorization

Lemma, which specifies the unique factorization imposed by the occurrence

of two proportional squares at the same position in a string.

2.1 Two Squares Factorization

Lemma 2.1 (Two Squares Factorization Lemma). For a balanced double

square DS(u,v), there exists a unique primitive string u1 such that u =

ue1
1 u2 and v = ue1

1 u2u
e2
1 , where u2 is a possibly empty proper prefix of u1

and e1, e2 are integers such that e1 ≥ e2 ≥ 1. Moreover,

(a) if |u2| = 0, then e1 > e2 ≥ 1;

(b) if |u2| > 0, then v is primitive, and if in addition e1 ≥ 2, then u is

also primitive.

In both cases, the factorization is unique.

Proof. Let z be the nonempty proper prefix of u[2] that is in addition a suffix

z of v[1]. But then z is also a prefix of v[1], hence of v[2]; thus if |u| ≥ 2|z|,

it follows that z2 is a prefix of u.
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z z z

é ùê úë û1
v é ùê úë û2

v

é ùê úë û1
u é ùê úë û2

u

In general, there exists an integer k =
⌊
|u|/|z|

⌋
≥ 1 such that u = zkz′

for some proper prefix z′ of z. Let u1 be the primitive root of z, so that

z = ue2
1 for some integer e2 ≥ 1.

u = zkz′

= ue2k
1 z′

= ue1
1 u2

v = uz

= ue1
1 u2u

e2
1

Therefore, for some e1 ≥ e2k and some prefix u2 of u1, u = ue1
1 u2 and

v = uz = ue1
1 u2u1

e2 , as required.

é ùê úë û1
v é ùê úë û2

v

é ùê úë û1
u é ùê úë û2

u

¢z ¢z

z z z z z z z z z z

To prove the uniqueness of u1 we consider two cases:
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(i) |u2| = 0

Here u = ue1
1 and v = ue1+e2

1 , so that x = u
2(e1+e2)
1 . Since |v| <

2|u| and e1 ≥ e2, it follows that e1 > e2. The uniqueness of u1 is a

consequence of Lemma 1.34(a).

(ii) |u2| > 0

Suppose the choice of u1 is not unique. Then there exists some

primitive string w1 with proper prefix w2, together with integers

f1 ≥ f2 ≥ 1, such that u = w1
f1w2 and v = w1

f1w2w1
f2 . If both

e1 ≥ 2 and f1 ≥ 2, it follows from Lemma 1.34(b) that u1 = w1

and e1 = f1. If e1 = f1 = 1, we observe that v = uu1 = uw1, so

that again u1 = w1. In the only remaining case, exactly one of e1, f1

equals 1: therefore suppose without loss of generality that f1 > e1 = 1.

Then u = u1u2 = w1
f1w2 and v = u1u2u1 = w1

f1w2w1
f2 , so that

u1 = w1
f2 . But since u1 is primitive, this forces f2 = 1 and u1 = w1,

which, since u1u2 = w1
f1w2 = uf1

1 w2, implies that f1 = 1, a contra-

diction. Thus all cases have been considered, and u1 is unique.

We now show that v is primitive. Suppose the contrary, so there exists

some primitive w and an integer k ≥ 2 such that v = wk. It follows that

|w| ≤ |v|/2 ≤ |ue1
1 |+ |u2|. Note that

w2k = v2 = ue1
1 u2u1

e1+e2u2u1
e2 , (2.1)
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so that w2k and ue1+e2
1 u2 have a common factor ue1+e2

1 u2 of length

(|ue1
1 |+ |u2|) + |ue2

1 | ≥ |w|+ |u1|.

Thus we can apply Common Factor Lemma 1.32 to conclude that w and u1

are conjugates, thus by (2.1) that w = u1. But (2.1) then requires that the

primitive string u1 = u2u2 aligns with u2u1, and so u2 is a prefix of u1,

which means u2u2 = u2u2 then u1 is non-primitive by Lemma 1.30. This is

a contradiction to 2.1 which requires u1 to be primitive. Thus we conclude

that v is primitive.

Now suppose in addition that e1 ≥ 2, but that u is not primitive. Then

there exists some primitive w and some integer k ≥ 2 such that u = wk.

Hence |w| ≤ |u|/2 = (|ue1
1 | + |u2|)/2 < |ue1−1

1 | + |u2|, since e1 ≥ 2 and

|u2| > 0. Therefore, since ue1
1 u2 is a prefix of u2 = w2k, and since e2 ≥ 1

by Lemma 2.1, w2k and ue1+e2
1 have a common prefix ue1

1 u2. Note that

|ue1
1 u2| ≥ |w| + |u1|, so that again applying Common Factor Lemma 1.32,

we conclude that u1 = w. This in turn implies u = ue1
1 u2 = uk

1, impossible

since 0 < |u2| < |u1|. Therefore u is primitive, as required.

Finally we remark that since u1 is a uniquely determined primitive string,

therefore u2, e1 and e2 are also uniquely determined.

The following examples show that the statement of the lemma is sharp:

(a) The second part of Lemma 2.1(b) requires that e1 ≥ 2. To see that this
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condition is not necessary, consider v2 = abaababaab, where u = (ab)a,

v = (ab)a(ab), so that u1 = ab, u2 = a, e1 = e2 = 1, but u is primitive.

(b) On the other hand, consider v2 = abaabaabaababaabaabaab, where u =

(aba)2 = (abaab)a, v= (abaab)a(abaab), so that u1 = abaab, u2 = a,

e1 = e2 = 1, where now u is not primitive.

u2 v2 u1 u2

abaabaaba · abaabaaba abaabaabaaba · abaabaabaaba aba |u2| = 0
bbabba · bbabba bbabbabba · bbabbabba bba |u2| = 0

Table 2.1: Illustrations of Lemma 2.1 case (a),’·’ divides two roots of u2

and v2, in the first example, e1 = 3, e2 = 1, and in the second example,
e1 = 2, e2 = 1

u2 v2 u1 u2

abcaabcaabc · abcaabcaabc abcaabcaabcabca · abcaabcaabcabca abca abc
bcbcbcb · bcbcbcb bcbcbcbbcbc · bcbcbcbbcbc bc b

Table 2.2: Illustrations of Lemma 2.1 case (b),’·’ divides two roots of u2

and v2, in the first example, e1 = 2, e2 = 1, and in the second example,
e1 = 3, e2 = 2

u2 v2 u1 u2

abccaabc · abccaabc abccaabcabcca · abccaabcabcca abcca abc
aba · aba abaab · abaab ab a

abaaba · abaaba abaabaabaab · abaabaabaab abaab a
abaaabaa · abaaabaa abaaabaaabaaaba · abaaabaaabaaaba abaaaba a

Table 2.3: Example that the condition of Lemma 2.1 case (b) is not necessary
: when e1 = e2 = 1 , u can be either primitive or non-primitive, the first two
examples are the case u is not primitive, the last two examples are the caseu
is primitive, ’·’ divides two roots of u2 and v2, in all examples e1 = e2 = 1
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Lemma 2.1 gives credence to the following definition of terminology and

notation:

Definition 2.2. For a balanced double square DS(u,v), we call the unique

factorization guaranteed by Lemma 2.1, the canonical factorization of the

double square and denote it by DS(u,v : u1,u2, e1, e2). The symbol u2

denotes the suffix of u1 such that u1 = u2u2.

u2 bbab · bbab
v2 bbabbba · bbabbba
u1 bba
u2 b
u2 ba
e1 1
e2 1

Table 2.4: An example of canonical factorization, ’·’ divides two roots of u2

and v2

Lemma 2.1 also gives rise to a number of important observations:

Observation 2.3. In Lemma 2.1, |u2| > 0 if any one of the following con-

ditions holds:

(a) v is primitive;

(b) u is primitive;

(c) there is no other occurrence of u2 farther to the right in v2 (u2 is

rightmost);

(d) u2 is regular.
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Moreover:

(e) |u2| > 0 if and only if v is primitive;

(f) If u2 is regular, then e1 = e2 = 1 and u1 is regular.

Proof. (a) |u2| = 0 implies v not primitive.

(b) |u2| = 0 implies u not primitive.

(c) |u2| = 0 implies u2 = u2e1
1 , which occurs twice in v2 = u

2(e1+e2)
1 , in

particular as a suffix.

(d) Since u2 is regular, therefore u is primitive, so that by (b), |u2| > 0.

(e) By (a), primitive v implies |u2| > 0; by Lemma 2.1, |u2| > 0 implies

that v is primitive.

(f) By (d), regular u2 implies |u2| > 0, so that u = ue1
1 u2, which is

regular only if e1 = e2 = 1 and u1 is regular.

In the context of Observation 2.3(f), consider the double square DS(u,v :

u1,u2, e1, e2) where u = aabaa, v = aabaaaab. In this case, we find u1 =

aab, u2 = aa, e1 = e2 = 1, but observe that u has prefix a2, so u2 is not

regular. Thus the condition e1 = 1 is more general than the requirement that

u2 be regular.

The following tables illustrate some of the cases discussed in this chapter.
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v u u1 u2 e1 e2
abaababa : v is primitive abaab aba ab : |u2| > 0 1 1
ababab : v is non-primitive abab ab |u2| = 0 2 1

Table 2.5: Example of Observation 2.3 case (a)

v u u1 u2

abaab aba : u is primitive ab a : |u2| > 0
abcaabcaabcabca abcaabcaabc : u is primitive abca abc : |u2| > 0

Table 2.6: Example of Observation 2.3 case (b), in the first example, e1 =
e2 = 1, and in the second example, e1 = 2, e2 = 1

v u u1 u2 e1 e2
abaabaabaab abaaba abaab a 1 1
aaaaaaa aaaa aaa a 1 1

Table 2.7: Example of the unnecessity of the condition in Observation 2.3
case (b): u is not primitive , but |u2| > 0

v2 u2 u1 u2 e1 e2
baababaa · baababaa baaba · baaba baa ba 1 1

abaab · abaab aba · aba ab a 1 1
abbabbabb · abbabbabb abb · abb abb |u2| = 0 2 1

Table 2.8: Example of Observation 2.3 case (c), in the third example, there
exists other occurrence of of u2 farther to the right in v2, underlined letters
are the right-most occurrence of u2 in v2,’·’ divides two roots of u2 and v2

v2 u2 u1 u2 e1 e2
aaaaaaaa · aaaaaaaa aaaaa|aaaaa aaa aa 1 1

Table 2.9: Example of the unnecessity of the condition in Observation 2.3
case (c): u2 is not the rightmost in v2, but |u2| > 0 , ’·’ divides two roots of
u2 and v2
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v u u1 u2 e1 e2
abaaaba · abaaaba abaa · abaa aba a 1 1
abcababc · abcababc abcab · abcab abc ab 1 1

Table 2.10: Example of Observation 2.3 case (d), ’·’ divides two roots of u2

and v2

v u u1 u2 e1 e2
aabaabaaab · aabaabaaab aabaaba · aabaaba aab a 2 1
ababaaababa · ababaaababa ababaa · ababaa ababa a 1 1

Table 2.11: Example of the unnecessity of the condition in Observation 2.3
case (d): u2 is not regular, but |u2| > 0 , underlined letters are the square
prefix of u2, ’·’ divides two roots of u2 and v2

v u u1 u2 e1 e2
abcababc · abcababc abcab · abcab abc ab 1 1
abbaabb · abbaabb abba · abba abb a 1 1

Table 2.12: Illustrations of Observation 2.3 case (f),’·’ divides two roots of
u2 and v2

v u u1 u2 e1 e2
abaabaabaab · abaabaabaab abaaba · abaaba abaab a 1 1

Table 2.13: Example of the unnecessity of the condition in Observation 2.3
case (f): u2 is not regular, but e1 = e2 = 1 and u1 is regular, underlined
letters are the square prefix of u2,’·’ divides two roots of u2 and v2
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2.2 Inversion Factors in a Balanced Double

Square

Inversion factors were introduced in [8] and used in FS double squares,

here we extend the concept to all double squares that admit special canonical

factorization: consider a double square DS(u,v : u1,u2, e1, e2) where |u2| >

0, and let u1 = u2u2. Thus v2 becomes

v2 = (u2u2)
e1u2(u2u2)

e1+e2u2(u2u2)
e2

= (u2u2)
e1−1(u2u2)u2(u2u2)(u2u2)

e1+e2−2(u2u2)u2(u2u2)(u2u2)
e2−1

= (u2u2)
e1−1u2(u2u2u2u2)(u2u2)

e1+e2−2u2(u2u2u2u2)(u2u2)
e2−1

= (u2u2)
e1−1u2(IF)(u2u2)

e1+e2−2u2(IF)(u2u2)
e2−1 (2.2)

where IF = u2u2u2u2 = R|u2|(u1)u1 is called the inversion factor.

v2 u2 u1 u2 u2 IF

abbaaabba · abbaaabba abbaa · abbaa abba a bba bbaaabba
abbabbababb · abbabbababb abbabbab · abbabbab abb ab b bababb

Table 2.14: underlined letters emphasize the inversion factors,’·’ divides two
roots of u2 and v2, in the first example, e1 = e2 = 1, and in the second
example, e1 = 2, e2 = 1

Lemma 2.4. Consider a double square DS(u,v : u1,u2, e1, e2) with a

non-empty u2. Then the inversion factor IF has exactly two occurrences in

v2 exactly a distance of |v| apart as shown in (2.2).
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Proof. Let IF1 denote the first inversion factor in a double square , IF2

denote the second inversion factor in a double square .

v2 = (u2u2)
e1−1u2(IF1)(u2u2)

e1+e2−2u2(IF2)(u2u2)
e2−1

The distance between IF1 and IF2 is |(u2u2)
e1+e2|+ |u2| = |ue1

1 u2u
e2
1 | = |v|.

Suppose there exists an inversion factor occurring somewhere else than the

positions of IF1 and IF2 in v2. According to the Synchronization principle

Lemma 1.31, the subfactor u2u2 of the inversion factor must align with one of

the three occurrences of u2u2 in v2, as u1 = u2u2 is primitive. On the other

hand, another subfactor u2u2 always aligns with u2u2. Thus u2u2 = u2u2,

which means u1 = u2u2 is not primitive by the Lemma 1.30 , contradicting

the primitiveness of u1.

The quantity lcs(u2u2,u2u2) gives the maximal number of positions the

structures (u2u2)
e1+e2 and (u2u2)

e2 can be cyclically shifted to the left in v2,

while lcp(u2u2,u2u2) gives the maximal number of positions the structures

(u2u2)
e1 and (u2u2)

e1+e2 can be cyclically shifted to the right. In [8], the

following lemma limiting the size of lcs(u2u2,u2u2) + lcp(u2u2,u2u2) was

given.

Lemma 2.5 ([8]). Considering ue1
1 u2u

e1+e2
1 u2u

e2
1 , where u1 is primitive and

u2 is a non-empty proper prefix of u1, e1 ≥ e2 ≥ 1, and u2 a suffix of u1 so

that u1 = u2u2, then lcs(u2u2,u2u2) + lcp(u2u2,u2u2) ≤ |u1| − 2.

Example

u = aababa, u1 = aabab, u2 = a, u2 = abab
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u2u2 = aabab, u2u2 = ababa

lcs = 0, lcp = 1, lcs(u2u2,u2u2) + lcp(u2u2,u2u2) = 1 ≤ |u1| − 2 = 3

In fact, in [8] the inversion factor is defined more generally as any

factor wwww of v2 such that |w| = |u2| and |w| = |u2| and a stronger

result is given (re-phrased in the terminology of this thesis):

Lemma 2.6 ([8]). Consider a double square DS(u,v : u1,u2, e1, e2) with

a non-empty u2 and let p = lcp(u2u2,u2u2) and s = lcs(u2u2,u2u2). Then

any inversion factor in v2 is either Ri(IF) or R−j(IF) for some i ∈ 0..p or

some j ∈ 0..s. Moreover, every Ri(IF) or R−j(IF) appear exactly twice in

v2 exactly a distance |v| apart for every i ∈ 0..p and every j ∈ 0..s.

Example

u = aaabbaaabbaa, u1 = aaabb, u2 = aa, u2 = abb, e1 = 2, e2 = 2

u2u2 = aaabb, u2u2 = abbaa

IF = u2u2u2u2 = abbaaaaabb

s = lcs = 0, p = lcp = 1, R1(IF) = bbaaaaabba

v2 = (aaabbaaabbaaaaabbaaabb)(aaabbaaabbaaaaabbaaabb), where un-

derlined letters are the two occurrences of R1(IF), the distance

is |aabbaaabbaaabbaaaaabba| = 22 = |v|
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2.3 Rare Factors in Balanced Double Squares

In this section, we discuss other factors with limited number of oc-

currences which we generically refer to as rare factors or rarely occurring

factors. In particular, we introduce right inversion subfactor (RIS) and

left inversion subfactor (LIS) in balanced double squares. These rare fac-

tors are half the size of the inversion factors, and, since they are shorter,

they provide a stronger restriction on the positions and lengths of a third

square. We will use them significantly in the next chapter for the New

Periodicity Lemma.

In [19], Thierry discusses the core of the period interrupt, a very

similar concept to the one we introduce here as RIS and LIS. For a

double square DS(u,v : u1,u2, e1, e2) with |u2| > 0, both RIS and LIS

have only two occurrences in a significant portion of v2.

Lemma 2.7 will be used to prove rare occurrences of RIS and LIS

in a balanced double square. It says that if a substring u of a string x

and its rotation u′ completely overlap except for one symbol, then u can

be cyclically shifted one position to the right, or, equivalently, u′ can be

cyclically shifted one position to the left.

Lemma 2.7. Consider a string x = x[1..n]. If the substrings x[i..i+ k] and

x[i+ 1..i+ 1 + k] are conjugates, then x[i] = x[i+ k + 1].

Proof. Since x[i..i+ k] and x[i+ 1..i+ 1 + k] are conjugates, the frequency

of the alphabet symbols in both must be the same. Let x[i] = a. Then
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x[i..i + k] must have the same number of a’s as x[i + 1..i + 1 + k], and so

x[i+ 1 + k] = a.

Example

x[1..n+ 1] = a babbab︸ ︷︷ ︸ a
x[1..n] = a babbab︸ ︷︷ ︸

x[2..n+ 1] = babbab︸ ︷︷ ︸ a
Note that Lemma 2.7 does not hold if u and u′ overlap less. For

example:

Example

x[1..n+ 1] = ab ababa︸ ︷︷ ︸ ba
x[1..n− 1] = ab ababa︸ ︷︷ ︸
x[3..n+ 1] = ababa︸ ︷︷ ︸ ba

neither x[1..n− 1] can be cyclically shifted to the right nor x[3..n+ 1] to

the left, yet x[1..n− 1] and x[3..n+ 1] are conjugates.

Note : From the definition below to the end of this chapter, we are

going to index from 0 to keep consistent with the publication The New

Periodicity Lemma Revisited [3].

Definition 2.8. Consider a double square DS(u,v : u1,u2, e1, e2) with

nonempty u2. The right inversion subfactors (or RIS) are two substrings
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x[i.. j] and x[i+ |v|, j + |v|], both of length |u1|, where

i = (e1 − 1)|u1|+ |u2|+ 1 + lcp(u2u2,u2u2)

j = e1|u1|+ |u2|+ lcp(u2u2,u2u2)

The left inversion subfactors (or LIS) are two substrings x[i.. j] and

x[i+ |v|, j + |v|], both of length |u1|, where

i = e1|u1|+ |u2| − 1− lcs(u2u2,u2u2)

j = (e1 + 1)|u1|+ |u2| − 2− lcs(u2u2,u2u2)

Here are two examples of RIS and LIS :

Example 1

u2 = abbab, u2 = a, u1 = abbaba, e1 = e2 = 1

lcp(u2u2,u2u2) = 1, lcs(u2u2,u2u2) = 0

u = u1u2 = abbabaabbab, v = u1u2u1 = abbabaabbababbaba

IF = u2u2u2u2 = a abbab abbab a

RIS = bbabab and LIS = babbab

abbaba abbab abbaba abbaba abbab abbaba
 0   1   2   3  4    5    6   7   8   9 10   11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

IF
IF

RIS

LIS

RIS

LIS

RIS:

i = (e1 − 1)|u1| + |u2| + 1 + lcp(u2u2,u2u2) = 0 + 5 + 1 + 1 = 7 and
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i+ |v| = 7 + 17 = 24

j = e1|u1| + |u2| + lcp(u2u2,u2u2) = 1× 6 + 5 + 1 = 12 and j + |v| =

12 + 17 = 29

LIS:

i = e1|u1| + |u2| − 1 − lcs(u2u2,u2u2) = 1 × 6 + 5 − 1 − 0 = 10 and

i+ |v| = 10 + 17 = 27

j = (e1 + 1)|u1| + |u2| − 2 − lcs(u2u2,u2u2) = 2 × 6 + 5 − 2 − 0 = 15

and j + |v| = 15 + 17 = 32

Example 2

u2 = abca, u2 = a, u1 = abcaa, e1 = 2, e2 = 1

lcp(u2u2,u2u2) = 1, lcs(u2u2,u2u2) = 1

u = u2
1u2 = abcaaabcaaabca,

v = u2
1u2u1 = abcaaabcaaabcaabcaa

IF = u2u2u2u2 = a abca abca a

RIS = bcaab and LIS = caabc

abcaa abcaa abca abcaa abcaa abcaa abca abcaa
 0   1   2   3  4     5   6  7   8  9    10 11 12 13 14 15 16 17 18 19 20 21 22 23  24 25 26 27 28 29 30 31 32  33 34 35 36 37

IF IF

RIS

LIS

RIS

LIS

RIS:

i = (e1 − 1)|u1| + |u2| + 1 + lcp(u2u2,u2u2) = 1 × 5 + 4 + 1 + 1 = 11

and i+ |v| = 11 + 19 = 30

j = e1|u1| + |u2| + lcp(u2u2,u2u2) = 2 × 5 + 4 + 1 = 15 and j + |v| =
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15 + 19 = 34

LIS:

i = e1|u1| + |u2| − 1 − lcs(u2u2,u2u2) = 2 × 5 + 4 − 1 − 1 = 12 and

i+ |v| = 12 + 19 = 31

j = (e1 + 1)|u1| + |u2| − 2 − lcs(u2u2,u2u2) = 3 × 5 + 4 − 2 − 1 = 16

and j + |v| = 16 + 19 = 35

It is useful to view RIS in the following way: let x[i.. j] be the maximum

right cyclic shift of the left half of the first IF, respectively of the left half

of the second IF. Then RIS is x[i + 1, j + 1]. According to Lemma 2.7,

if x[i, j] and x[i + 1, j + 1] were conjugate, x[i + 1, j + 1] would have to be

a right cyclic shift of x[i, j], which is a contradiction. Thus x[i + 1, j + 1]

cannot be conjugate with x[i, j] and hence a copy of it can occur neither in

u1
e1+e2 , nor in u1

e2 .

Similarly for LIS: let x[i, j] be the maximum left cyclic shift of the right

half of the first IF, respectively of the right half of the second IF. Then LIS

is x[i− 1, j − 1]. Again, according to Lemma 2.7, if x[i, j] and x[i− 1, j − 1]

were conjugate, x[i − 1, j − 1] would have to be a left cyclic shift of x[i, j],

which is a contradiction. Thus x[i−1, j−1] cannot be conjugate with x[i, j]

and hence a copy of it can occur neither in u1
e1 , nor in u1

e1+e2 .

For a better understanding, we illustrate the two natural occurrences of

RIS in the following diagram:
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u2u2 u2 u2 u2 u2u2 u2 u2 u2 u2 u2 u2 u2

RIS RIS

lcp(u2u2,u2u2)+1

|u2u2|

lcp(u2u2,u2u2)+1

|u2u2|

IF IF

and the two natural occurrences of LIS as follows:

u2u2 u2 u2 u2 u2u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2)+1

|u2u2|

LIS

lcs(u2u2,u2u2)+1

|u2u2|

LIS
IF IF

The purpose of presentingRIS and LIS is to have some structures similar

to IF’s but shorter, as shorter factors provide a stronger constraint about

where the third square can occur in a balanced double square. This will be

used in the proof of a reformulated New Periodicity Lemma in Chapter 3.

Let us explain what we mean by “stronger constraint”: when using just

IF’s to prove where we can have a third square in a balanced double square

DS(u,v), the argument follows this line: suppose we have a third square w2

such that w[1] contains the first IF, then necessarily w[2] must contain the

second IF (and so |w| = |v|), or w[1] must contain a part of the second IF

(and so |w| > |v|); i.e. it forces the square w2 to be big and hence a smaller

square cannot exist. However, this argument fails when w[1] just contains a

part of the first IF. Nevertheless, w[1] may still contain the first RIS or LIS

and it would force the size of w2 in the same way.

In the last part of this chapter, we will analyze the mutual positions of

RIS and LIS by describing the extreme cases when RIS and LIS are almost
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disjoint and when they completely overlap. Let R1 denote the maximal right

cyclic shift of the left half of IF1, R2 denote the maximal right cyclic shift of

the left half of IF2, while L1 denote the maximal left cyclic shift of the right

half of IF1, and L2 denote the maximal left cyclic shift of the right half of

IF2. We already established that the maximal right cyclic shift of the left

half of IF is determined by lcp(u2u2,u2u2) and the maximal left cyclic shift

of the right half of IF is determined by lcs(u2u2,u2u2). Lemma 2.5 bounds

the size of the shifts as lcp(u2u2,u2u2) + lcs(u2u2,u2u2) ≤ |u1| − 2.

Note : Since we get the first pair of RIS and LIS in the same way as the

second pair of RIS and LIS , we only discuss how we get the first pair in

the following cases.

Case 1: lcp(u2u2,u2u2) = lcs(u2u2,u2u2) = 0

This is the case when RIS and LIS are almost disjoint. In this case, R1 is

exactly the left half of IF1, and if we shift R1 one position to the right, then

we get RIS, and L1 is exactly the right half of IF2, and if we shift L1 one

position to the left then, we get LIS.

u2u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

One 
letter

One 
letter

IF

RIS

LIS

IF

RIS

LIS
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Example 1

u2 = abc, u2 = cb, u1 = abccb, e1 = 2, e2 = 1

lcp(u2u2,u2u2) = lcp(abccb, cbabc) = 0

lcs(u2u2,u2u2) = lcs(abccb, cbabc) = 0

u = u2
1u2 = abccbabccbabc, v = u2

1u2u1 = abccbabccbabcabccb

IF = u2u2u2u2 = cbabcabccb

RIS = babca, LIS = cabcc

abccbabccbabcabccbabccbabccbabcabccb 

IF IF

RIS
LIS

RIS
LIS

Case 2: lcp(u2u2,u2u2) = |u1| − 2, lcs(u2u2,u2u2) = 0

This is the case when RIS and LIS completely overlap. In this case, L1 is

exactly the right half of IF1, and if we shift L1 one position to the left, then

we get LIS, and RIS is at the furthest position to the right as it can be.

u2u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

IF

RIS
LIS

One 
letter

IF

RIS
LIS

Example 2

u2 = ab, u2 = aba, u1 = ababa, e1 = 2, e2 = 1

lcp(u2u2,u2u2) = lcp(ababa, abaab) = 3

lcs(u2u2,u2u2) = lcs(ababa, abaab) = 0

u = u2
1u2 = ababaababaab, v = u2

1u2u1 = ababaababaabababa
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IF = u2u2u2u2 = abaabababa

RIS = LIS = babab

ababaababaabababaababaababaabababa 

IF

RIS=LIS

IF

RIS=LIS

Case 3: lcp(u2u2,u2u2) = 0, lcs(u2u2,u2u2) = |u1| − 2

This, too, is a case when RIS and LIS completely overlap. In this case, R1

is exactly the left half of IF1, and if we shift R1 one position to the right

then we get RIS, and LIS is at the furthest position to the left as it can be.

u2u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

IF

LIS
RIS RIS

LIS

One 
letter

IF

Example 3

u2 = baa, u2 = a, u1 = baaa, e1 = 2, e2 = 2

lcp(u2u2,u2u2) = lcp(baaa, abaa) = 0

lcs(u2u2,u2u2) = lcs(baaa, abaa) = 2

u = u2
1u2 = baaabaaabaa, v = u2

1u2u
2
1 = baaabaaabaabaaabaaa

IF = u2u2u2u2 = abaabaaa

RIS = LIS = baab

baaabaaabaabaaabaaabaaabaaabaabaaabaaa
IF

RIS=LIS

IF

RIS=LIS
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Case 4: lcp(u2u2,u2u2) 6= 0, lcs(u2u2,u2u2) 6= 0, lcp(u2u2,u2u2) +

lcs(u2u2,u2u2) = |u1| − 2

This, too, is a case when RIS and LIS completely overlap.

Example 4

u2 = abb, u2 = ab, u1 = abbab, e1 = 2, e2 = 2

lcp(u2u2,u2u2) = lcp(abbab, ababb) = 2

lcs(u2u2,u2u2) = lcs(abbab, ababb) = 1

u = u2
1u2 = abbababbababb, v = u2

1u2u
2
1 = abbababbababbabbababbab

IF = u2u2u2u2 = ababbabbab

RIS = LIS = bbabb

abbababbababbabbababbababbababbababbabbababbab 
IF

RIS=LIS

IF

RIS=LIS
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Chapter 3

Application of canonical

factorization to New

Periodicity Lemma

In this chapter based on the paper [3], we discuss an application of the canon-

ical factorization of balanced double squares to the New Periodicity Lemma,

[9], which shows that the occurrence of two special squares at a position i

in a string, necessarily precludes the occurrence of other squares of specific

period in a specific neighbourhood of i. The proof of this lemma is com-

plex, breaking down into 14 subcases, and requires very strong assumptions,

namely that the shorter of the two squares be regular and the bigger one

primitive.

Before proving a strengthen version of Lemma 3.1, we state the original
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New Periodicity Lemma:

Lemma 3.1 ([9], New Periodicity Lemma). Let a regular u2 and a prim-

itively rooted v2 be prefixes of a string x so that |u| < |v| < 2|u|. Then

for all integers k and w such that 0 ≤ k < |v|−|u| < w < |v|, w 6= |u|,

x[k+1..k+2w] is not a square.

Example 1

u = aba, so u2 is regular

v = abaab is primitive, so v2 is primitively rooted.

|u| = 3, |v| = 5, |v| − |u| = 2

x = abaababaab · · ·

0 ≤ k < 2 < w < 5

e.g. when k = 0 and w = 4, then x[1.. 8] = abaa|baba is not a square, or

e.g. when k = 1 and w = 3, then x[2.. 7] = baa|bab is not a square, and

so on for all possible values of k and all possible values of w.

Example 2

u = abbaabb and so u2 is regular

v = abbaabbabba is primitive and so v2 is primitively rooted

|u| = 7, |v| = 11, |v| − |u| = 4

x = abbaabbabbaabbaabbabba · · ·

0 ≤ k < 4 < w < 11

e.g. when k = 0 and w = 5, then x[1.. 10] = abbaa|bbabb is not a square,

or e.g. when k = 0 and w = 6, then x[1.. 12] = abbaab|babbaa is not a
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square, or e.g. when k = 1 and w = 5, then x[2.. 11] = bbaab|babba

is not a square, or e.g. when k = 1 and w = 8, then x[2.. 17] =

bbaabbab|baabbaab is not a square, and so on for all possible values of

k and all possible values of w.

Example 3

u = abcaabc and so u2 is regular

v = abcaabcabca is primitive and so v2 is primitively rooted

|u| = 7, |v| = 11, |v| − |u| = 4

x = abcaabcabcaabcaabcabca · · ·

0 ≤ k < 4 < w < 11

e.g. when k = 0 and w = 5, then x[1.. 10] = abcaa|bcabc is not a square,

or e.g. when k = 0 and w = 6, then x[1.. 12] = abcaab|cabcaa is not a

square, or e.g. when k = 1 and w = 5, then x[2.. 11] = bcaab|cabca

is not a square, or e.g. when k = 1 and w = 8, then x[2.. 17] =

bcaabcab|caabcaab is not a square, and so on for all possible values of

k and all possible values of w.

In fact, the requirement that u2 be regular seems unnecessary. Here we

list a few examples that satisfy the conclusion of Lemma 3.1 yet violate the

regularity condition:

Example 4

u = abbababbababbababb, u2 is not regular as for instance (abbab)2 is a

prefix of u

v = abbababbababbababbabbababbab is primitive
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|u| = 18, |v| = 28, |v| − |u| = 10

x = abbababbababbababbabbababbababbababbababbababbabbababbab · · ·

0 ≤ k < 10 < w < 28

e.g. when k = 0 and w = 11, then x[1.. 22] = abbababbaba|bbababbabba

is not a square, or e.g. when k = 0 and w = 12, then x[1.. 24] =

abbababbabab|bababbabbaba is not a square, and so on for all possible val-

ues of k and all possible values of w.

Example 5

u = aabaaab, u2 is not regular as for instance a2 is a prefix of u

v = aabaaabaaba is primitive

|u| = 7, |v| = 11, |v| − |u| = 4

x = aabaaabaabaaabaaabaaba · · ·

0 ≤ k < 4 < w < 11

e.g. when k = 3 and w = 6, then x[4.. 15] = aaabaa|baaaba is not a

square, or e.g. when k = 3 and w = 7, then x[4.. 17] = aaabaab|aaabaaa

is not a square, and so on for all possible values of k and all possible

values of w.

Example 6

u = aaba, u2 is not regular as for instance a2 is a prefix of u

v = aabaaabaaba is primitive

|u| = 7, |v| = 11, |v| − |u| = 4

x = aabaaabaabaaabaaabaaba · · ·

0 ≤ k < 4 < w < 11
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e.g. when k = 3 and w = 6, then x[4.. 15] = aaabaa|baaaba is not a

square, or e.g. when k = 3 and w = 7, then x[4.. 17] = aaabaab|aaabaaa

is not a square, and so on for all possible values of k and all possible

values of w.

The Examples 4, 5, and 6 shows that the regularity of u2 is maybe an

unnecessary assumption. Since u and v are proportional squares, they

form a balanced double square. Thus, the required assumption of primi-

tivness of v is redundant by Observation 2.3: the fact that u2 is regular

already forces the primitivness of v. Also note that the regularity of u2

necessarily implies that in the canonical factorization of a double square

DS(u,v : u1,u2, e1, e2) the exponents are all equal 1, i.e. e1 = e2 = 1. Let

us see what Lemma 3.1 says in the terms of the canonical factorization: so

we have a double square DS(u,v : u1,u2, 1, 1). As always, let u2 be a suffix

of u1 such that u1 = u2u2. The canonical factorization thus gives

v2 =

u1︷ ︸︸ ︷
(u2 u2)u2(u2u2)︸ ︷︷ ︸

IF1

(u2 u2)u2(u2u2)︸ ︷︷ ︸
IF2

Thus, 0 ≤ k < |v| − |u| < w < |v| gives 0 ≤ k < |u1| < w < |v|. Therefore,

Lemma 3.1 says that there is no square w2 that starts in the first u1 and

such that |u1| < |w| < |v| and |w| 6= |u|.

Now, let us consider a square w2 such that |u1| < |w| < |v| and |w| 6= |u|.

We want to show that this is not possible just from the properties of the

canonical factorization. If for instance w starts in the first u2 and ends in
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the fourth u2, then w[1] contains fully the IF1, so w[2] has to contain IF2,

and so |w| ≥ |v|, a contradiction. If w ends in the second u2 we cannot

argue using IF, but still knowing that u2u2 is primitive and also all its

rotations are primitive, using the Synchronization principle Lemma 1.31 can

be applied to obtain a contradiction.

Almost all possible cases for w2 except two can be easily shown impos-

sible using only the properties of the canonical factorization. Thus, it was

clear that the canonical factorization could not only provide a significantly

simplified proof of Lemma 3.1, but also could allow to significantly reduce

the assumption that u must be regular. This was the motivation for the

research culminating in Theorem 3.2. To increase the power of the use of

inversion factors for the use in the proof of Theorem 3.2, the right and left

inversion subfactors RIS and LIS were studied, see Chapter 2. The main

result in this chapter is the following Theorem 3.2.

Theorem 3.2. Consider a balanced double square DS(u,v) and let u′ be a

suffix of v such that v = uu′. Let w2 be any square that is a substring of

v2. Then exactly one of the following mutually exclusive cases holds:

(a) w = v, or

(b) |w| < |u|, or

(c) |u| ≤ |w| < |v| and the primitive root of w is a conjugate of the pri-

mitive root of u′.

Before we prove the theorem, let us discuss how it relates to the original

Lemma 3.1. As mentioned above, for a very specific double square, the
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lemma forbids squares starting in the first u1 of lengths bigger than |u1| but

smaller than |v| with a possible exception of length |u|. Theorem 3.2 for such

a double square forbids squares starting anywhere if their length is bigger

than |u| and smaller than |v|. So the “forbidding power” of the theorem is

slightly less than that of the lemma with respect to the sizes of w2; however

it covers a larger range of possible starts for “forbidden” squares (anywhere

instead of in the first u1), and above all, it applies to all balanced double

squares without any additional conditions or constraints. Now we

can proceed with the proof of Theorem 3.2.

Proof. If |w| ≥ |v|, then w = v since w2 is a substring of v2, and thus

case (a) holds. Hence, for the remainder of the proof we can assume that

|w| < |v|. Since double square DS(u,v) is balanced, it admits the canonical

factorization: DS(u,v : u1,u2, e1, e2), by Lemma 2.1. Then u′ = ue2
1 and

the primitive root of u′ is u1.

We first deal with the case |u2| = 0. By Lemma 2.1, u1 is the primitive

root of u = ue1
1 and of v = ue1+e2

1 with e1 > e2 ≥ 1. If case (b) does not

hold, we must have |w| ≥ |u| = |ue1
1 | > |u1|. Thus w2 and u2e1+2e2

1 have a

common factor of size |u1|+|w|, so that by Common factor Lemma 1.32, the

primitive root of w is a conjugate of u1, i.e. case (c) holds.

Now let us deal with case |u2| > 0. Suppose that (b) does not hold and

so |u| ≤ |w| < |v|.

Let us assume that there is a square w2 starting in ue1
1 such that |w| >

|u|. Since for |w| = |u|, w can only be a conjugate of u, and hence the
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primitive root of w must be a conjugate of the primitive root of u, i.e. u1, so

that (c) holds, we may suppose |w| > |u|. First note that due to the virtual

left-right symmetry of the canonical factorization ue1
1 u2u

e1+e2
1 u2u

e2
1 (only the

exponents e1 and e2 may differ), and to the fact that the arguments presented

below can be applied either from the left or from the right, we therefore need

only prove the assertion for w2 starting in v[1]. Several cases need to be

discussed:

(1) w[1] starts in the first u1 of ue1
1 and ends in the first u1 of ue1+e2

1

u2

k

w

u1 u2

k’

u1 u1 u1 u1 u1

Since |w| > |u| = |ue1
1 |+|u2|, k < k′.

(i) k′ ≤ lcp(u2u2,u2u2)

Then w[1] has as a prefix a k-th rotation of u1 and w[2] has as

a prefix a k′-th rotation of u1. By the Synchronization principle

Lemma 1.31, k = k′, a contradiction. This case is not possible.

(ii) k′ > lcp(u2u2,u2u2)

Here w[1] contains the first RIS, and so w[2] must contain an

occurrence of RIS. Since w[2] is a factor in ue1+e2
1 u2, therefore by

Lemma 2.8 w[2] must contain the second RIS and so |w| ≥ |v|,

a contradiction. This case is not possible.

(2) w[1] starts in the first u1 of ue1
1 and ends past the first u1 of ue1+e2

1 .
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u2

w

u1 u2u1 u1 u1 u1 u1

The same argument as in (1)(ii) gives |w| ≥ |v|, a contradiction. This

case is not possible.

(3) w[1] starts in ue1−1
1 u2 but not in the first u1.

u2

w

u2u2u2 u2u2 u2u2 u2u2(u2u2)     (u2  u2)e1-1

Then e1 > 1 and since |w| > |u| = |ue1
1 u2|, w[1] ends past the first u1

of ue1+e2
1 . Therefore, w[1] contains RIS and so |w| ≥ |v|, i.e. this case

is not possible.

(4) w[1] starts in the suffix of u2u2 of u whose length ≤ lcs(u2u2,u2u2).

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2) lcp(u2u2,u2u2)

s(u2u2)         u2p
e1+e2

Here w[1] is a factor in su1
e1+e2u2p, where s is the maximal common

suffix and p the maximal common prefix of u2u2 and u2u2. Thus

w2 and su1
e1+e2u2p have a common factor of size |u1+w| and by the

Common Factor Lemma 1.32, the primitive root of w is a conjugate of

u1, i.e. case (c) holds.

(5) w[1] starts in the suffix of u2u2 of u whose length > lcs(u2u2,u2u2).

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2)
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Then w[1] contains LIS and thus w[2] must contain an occurrence of

LIS and so |w| ≥ |v|, and so this case is not possible.

(6) w[1] starts past the first u.

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

s(u2u2)         u2p
e1+e2

The same argument as in (4) shows that the primitive root of w is a

conjugate of u1 and so case (c) holds.

In the following we present a few examples of the Theorem 3.2 illustrating

various situations encountered in the proof.

Example 1

This is an example of a square w2 such that |w| < |u1|

u2 = abaa, u2 = baa, u1 = abaabaa, e1 = 1, e2 = 1

u = u1u2 = abaabaaabaa

v = u1u2u1 = abaabaaabaaabaabaa

w2 = abaaba

v2 = abaaba︸ ︷︷ ︸
w2

aabaaabaabaaabaabaaabaaabaabaa

Example 2

This is an example of a square w2 such that |w| < |u|

u2 = abb, u2 = ab, u1 = abbab, e1 = 2, e2 = 1

u = u2
1u2 = abbababbababb
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v = u2
1u2u1 = abbababbababbabbab

w2 = abbababbab

v2 = abbababbab︸ ︷︷ ︸
w2

abbabbababbababbababbabbab

Example 3

This is an example of a square w2 such that |w| < |u|

u2 = abb, u2 = ab, u1 = abbab, e1 = 2, e2 = 2

u = u2
1u2 = abbababbababb

v = u2
1u2u

2
1 = abbababbababbabbababbab

w2 = babbababbababbababba

v2 = abbababbabab babbababba babbababba︸ ︷︷ ︸
w2

babbabbababbab

Example 4

This is an example of a square w2 such that |w| < |u|

u2 = abaa, u2 = a, u1 = abaaa, e1 = 2, e2 = 1

u = u2
1u2 = abaaaabaaaabaa

v = u2
1u2u1 = abaaaabaaaabaaabaaa

w2 = aabaaaabaaaabaaaabaa

v2 = abaaaabaaaaba aabaaaabaa aabaaaabaa︸ ︷︷ ︸
w2

abaaa

Example 5

This is an example of a square w2 such that |w| < |u|

u2 = ab, u2 = b, u1 = abb, e1 = 2, e2 = 2

u = u2
1u2 = abbabbab
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v = u2
1u2u

2
1 = abbabbababbabb

w2 = bbabbabbabba

v2 = abbabbaba bbabbabbabba︸ ︷︷ ︸
w2

babbabb

Example 6

This is an example of a square w2 such that |w| < |u|

u2 = aabc, u2 = bc, u1 = aabcbc, e1 = 3, e2 = 1

u = u3
1u2 = aabcbcaabcbcaabcbcaabc

v = u3
1u2u1 = aabcbcaabcbcaabcbcaabcaabcbc

w2 = bcbcaabcbcaabcbcaabcbcaa

v2 = aabcbcaabcbcaabcbcaabcaa bcbcaabcbcaa bcbcaabcbcaa︸ ︷︷ ︸
w2

bcaabcbc
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Chapter 4

Application of canonical

factorization to Three Squares

Lemma

In this chapter based on the paper [1], we discuss an application of the

canonical factorization of double squares to the Three Squares Lemma by

Crochemore and Rytter introduced in 1995. It is a structural lemma on

three squares starting at the same position. This influential lemma has been

used by many researchers in the field of periodicities in strings. In particular,

Fraenkel and Simpson used it in 1998 to obtain a universal upper bound for

the maximum number of distinct squares occurring in a string. We present

a generalization of Three Squares Lemma by exploiting the canonical factor-

ization of balanced double squares discussed in Chapter 2. Let us first state
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the original lemma.

Lemma 4.1 ([7], Three Squares Lemma). Let u2 6= v2 be proper prefixes of

w2 and let u, v, and w be primitive, then |u|+|v| < |w|.

Lemma 4.1 has been used by many researchers including Kolpakov and

Kucherov [13], Stoye and Gusfield [18], Fan, Puglisi, Smyth, and Turpin

[9], Simpson [16]. Lemma 4.1 was essential for the 1998 result by Fraenkel

and Simpson [10] giving a universal upper bound of 2n for the number of

distinct squares in a string of length n. Note that for the problem of distinct

squares, every type of square is only counted once, i.e. the types, rather than

the occurrences, are counted. For illustration, aabaab contains the following

three underlined squares aabaab, aabaab and aabaab while the number of

distinct squares is 2: aa and aabaab. Ilie [12] provided in 2005 an alternate

proof of the main theorem of [10] not directly using Lemma 4.1. Noticing

that the proof of Lemma 4.1 by Crochemore and Rytter only requires the

primitiveness of the shortest square, Fraenkel and Simpson [10] proposed the

following strengthening referred to as three-prefix-square Lemma in [6] where

additional context and references can be found.

Lemma 4.2 ([10],Three Squares Lemma – Fraenkel and Simpson variant).

Let u2 6= v2 be proper prefixes of w2 and let the shorter of the two strings u

and v be primitive, then |u|+|v| ≤ |w|.

63



Ph.D. Thesis - H Bai Computing & Software, McMaster University

Example 1

w2 = aabaaababaabaaabab

w = aabaaabab, v = aaba, u = a

|w| = 9, |v| = 4, |u| = 1, thus, |u|+|v| ≤ |w|

Example 2

w2 = abbabbaabbabbaaabbabbaabbabbaa

w = abbabbaabbabbaa, v = abbabba, u = abb

|w| = 15, |v| = 7, |u| = 3, thus, |u|+|v| ≤ |w|

Example 3

w2 = abaabaabaaba

w = abaabaabaaba, v = abaaba, u = aba

|w| = 12, |v| = 6, |u| = 3, thus, |u|+|v| ≤ |w|

Example 4

w2 = abababababab

w = ababab, v = abab, u = ab

|w| = 6, |v| = 4, |u| = 2, thus, |u|+|v| = |w|

Fraenkel and Simpson illustrated the necessity of the primitiveness for the

shortest square with the following example: u = a2, v = a4, and w = a5. We

present a further strengthening based on the recently investigated structural

properties of two squares starting at the same position, see [2, 8].

Fraenkel and Simpson counterexample

w2 = aaaaaaaaaa

w = aaaaa, v = aaaa, u = aa
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|w| = 5, |v| = 4, |u| = 2, thus, |u|+|v| > |w|

In the paper [1], our strengthened version of the Three Sqaure Lemma

was formulated in the following way

Lemma 4.3. Let u2 6= v2 be proper prefixes of w2, then |u|+|v| ≤ |w| unless

u,v, and w have the same primitive root.

After the publication of [1], a fellow AdvOL Ph.D. student Adrien Thierry

came with a counterexample for the lemma:

u = (ab)2, v = (ab)3a, and w = (ab)3a(ab), clearly |u|+ |v| = 4 + 7 = 11

while |w| = 9, yet ww =

uu︷︸︸︷
abab abaabababa︸ ︷︷ ︸

vv
baab and u, v, and w do not

have the same primitive root.

Thierry’s counterexample pointed out a little oversight in the proof of

Lemma 4.3. The proof was corrected and it weakened the conclusion of

the lemma slightly. Here we present the corrected Lemma 4.4 and its proof.

The corrigendum was published soon after the error was detected, see [1].

Lemma 4.4. Let u2 6= v2 be proper prefixes of w2, then |u| + |v| ≤ |w|

unless u = v1
t, v = v1

p1v2, and w = v1
p1v2v1

p2 where v1 is primitive, v2 a

proper possibly empty prefix of v1, t > p2, and p1 ≥ p2 ≥ 1.

Lemma 4.4 shows that the squares u2, v2, and w2 violating |u|+|v| ≤ |w|

consist of two types; one corresponding to the counterexample given by

Fraenkel and Simpson (when v2 = ε) and one corresponding to the coun-
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terexample of Thierry (when v2 6= ε). Bellow is essentially Fraenkel-Simpsons

counterexample:

w2 = abababababababab

w = abababab, v = ababab, v = abab,

|w| = 8, |v| = 6, |u| = 4, thus, |u|+|v| > |w|

Corollary 4.5 illustrates that Lemma 4.4 is a true generalization of Lemma 4.2.

Corollary 4.5. Let u2 be a proper prefix of v2 that is a proper prefixes of

w2 and let u be primitive, then |u|+|v| ≤ |w|. Moreover, if |u| < |v| < 2|u|

and either v or w is primitive, then |u|+|v| ≤ |w|.

Proof. Let us assume by contradiction that |u|+|v| > |w|. Then by Lemma 4.4,

u = v1
t, v = v1

p1v2 and w = v1
p1v2v1

p2 for a primitive v1, a proper possibly

empty prefix v2 of v1, and t > p2, p1 ≥ p2 ≥ 1. If u is primitive, t = 1 and

so t > p2 ≥ 1 is a contradiction. If |v| < 2|u|, then v1
p1v2 is a prefix of v1

2t,

which can only be true when v2 is empty due to Synchronization Principle

Lemma 1.31. If v is primitive, then p1 = 1 and so p2 = 1 and so u = v1
t,

t > 1 and v = v1 and w = v1
2, and so |u| ≥ |w|, a contradiction. If w is

primitive, then w = v1, and so |w| = |v|, a contradiction.

Example 1 : when u is primitive

w2 = abababababababab

w = abababab, v = abab, u = ab

|w| = 8, |v| = 4, |u| = 2, thus, |u|+|v| ≤ |w|
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Example 2 : when |u| < |v| < 2|u| and v is primitive

w2 = aabaabaabaab

w = aabaab, v = aab, u = aa

|w| = 6, |v| = 3, |u| = 2, thus, |u|+|v| ≤ |w|

Example 3 : when |u| < |v| < 2|u| and w is primitive

w2 = aaaaaabaaaaaab

w = aaaaaab, v = aaa, u = aa

|w| = 7, |v| = 3, |u| = 2, thus, |u|+|v| ≤ |w|

Example 4 : when v is primitive, this example shows that condi-

tions in Corollary 4.5 are not necessary to conclude that |u|+|v| ≤

|w|, since u is not primitive and |v| > 2|u|.

w2 = aaaabaaaabaaaabaaaab

w = aaaabaaaab, v = aaaab, u = aa

|w| = 10, |v| = 5, |u| = 2, thus, |u|+|v| ≤ |w|

Proof of Lemma 4.4

Proof. Let u 6= v, and u2 and v2 be both proper prefixes of w2. Lemma 4.4

states that{
u = v1

t,v = v1
p1v2,w = v1

p1v2v1
p2 , t > p2 , p1 ≥ p2 ≥ 1

}
or
{
|u|+

|v| ≤ |w|
}

. (S)

Without loss of generality, we can assume that |u| < |v|.

If 2|v| ≤ |w|, then |v|+|u| < |w| as |u| < |v|, and thus (S) holds. Therefore,
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we can assume that |w| < 2|v|; that is, (v,w) is a balanced double square and

thus admits a canonical factorization (v,w : v1,v2, p1, p2) by Lemma 2.1.

We consider the following cases.

1. Case when u and v are not proportional, i.e. 2|u| ≤ |v|.

If |u| < |v1|, then

|u|+ |v| = |u|+ |vp1
1 v2|

< |v1|+ |vp1
1 v2|

= |vp1+1
1 v2|

≤ |vp1+p2
1 v2|

= |w|

If |u| ≥ |v1|, since u2 is a prefix of v = v1
p1v2, then u2 and v1

p1v2

have a common factor of length |u|+|v1|, and by Lemma 1.32 , u and

v1 have the same primitive root, and so v1 is the primitive root of v1.

Thus u = v1
t for some t ≥ 1, v = v1

p1v2, and w = v1
p1v2v1

p2 .

Now we check the relation between |v1
t + v1

p1v2| and |v1
p1v2v1

p2 |,

which actually is the relation between |v1
t| and |v1

p2|.

If t ≤ p2, then |u| + |v| ≤ |w|, but if t > p2, then |u| + |v| > |w|. In

both cases , (S) holds.

2. Case when u and v are proportional, i.e. |v| < 2|u|.
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Then DS(u,v) is a balanced double square and thus admits by the Two

Square Factorization Lemma 2.1 a canonical factorization DS(u,v :

u1,u2, e1, e2). As a result, we have:

u = ue1
1 u2

v = ue1
1 u2u

e2
1

v2 = ue1
1 u2u

e1+e2
1 u2u

e2
1

and

v = vp1
1 v2

w = vp1
1 v2v

p2
1

w2 = vp1
1 v2v

p1+p2
1 v2v

p2
1

(i) Case when |u2| = 0. Then e1 > e2, u = u1
e1 , and v = u1

e1+e2 .

Let us assume that |w| < |u|+ |v| = (2e1 + e2)|u1|. Then w2

and u1
2e1+2e2 have a common factor of length |w|+ |u1|, and by

the Common Factor Lemma 1.32 the primitive root of w is a

conjugate of u1, i.e. equals u1. Thus, u, v, and w all have the

same primitive root, and thus (S) holds.

(ii) Case when |u2| > 0. Let w[1] refer to the first occurrence of w

and w[2] to the second. First, we have to show that w[1] does not

end in the first u1 of u1
e1+e2 . If it did, then it would contradict the

Synchronization Principle Lemma 1.31 as w[1] and hence w[2] has

the primitive u1 as a prefix as indicated by the following diagram:

u1 u1 u1 u1 u1 u1u2 u2

u1
w[1] u1

w[2]
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Thus, w[1] must end somewhere past the first u1 of u1
e1+e2 :

u1 u1 u1 u1 u1 u1u2 u2

w[1] w[2]

inversion 
factor

inversion 
factor

As a consequence, ws[1] contains the first inversion factor of

u1
e1u2u1

e1+e2u2u1
e2 exactly at a distance of |u1

e1−1u2| from the

beginning. It follows that w[2] must contain an occurrence of the

inversion factor at exactly the same distance from the beginning

of w[2]. If it were the second inversion factor, then the length

of w would be exactly |v| as it is the distance between the two

occurrences of the inversion factor in w2, a contradiction. Thus,

it must be an occurrence of the inversion factor past the second

one. The first possible start of another occurrence of the inversion

factor is the suffix u2 of u1
e1u2u1

e1+e2u2u1
e2 . If e1 = e2, then it

is the case that w[1] = w[2] = u1
e1−1(u2u2u2u2)u1

e1+e2−1u2 (see

below) and then

u1 u1 u1 u1 u1u2 u2

w[1] w[2]

u2u2

u1 u2
e1-1 u1 u2

e1-1

inversion 
factor

inversion 
factor

inversion 
factor

|w| = |u|+ |v| as |u| = |u1
e1u2| and |v| = |u1

e1+e2u2|, thus (S)

holds. If e1 > e2, then the occurrence of the inversion factor in w[2]

must be at a distance |u1
e1−1u2| from the beginning of w[2]. By

the Synchronization Principle Lemma 1.31, the prefix u1
e1−1u2 of
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w[2] must align with u1
e2 or start in the last u1 of u1

e2 , and so w[1]

must have u1
e1u2u1

e1+e2u2 as a prefix, again yielding |w| ≥ |u|+|v|

(see below), thus (S) holds.

u1 u1 u1 u1 u1u2 u2

w[1] w[2]
u1 u2

e1-1

u1

u1 u2
e1-1

inversion 
factor

inversion 
factor

inversion 
factor

or

u1 u1 u1 u1 u1u2 u2

w[1] w[2]
u1 u2

e1-1

u1

u1 u2
e1-1

inversion 
factor

inversion 
factor

inversion 
factor

or

u1 u1 u1 u1 u1u2 u2

w[1] w[2]
u1 u2

e1-1

u1

u1 u2
e1-1

inversion 
factor

inversion 
factor

inversion 
factor

This completes the proof.
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Chapter 5

Conclusion and Future work

We presented a unique canonical factorization of a balanced double square

consisting of two squares starting in the same position and of comparable

lengths. The interesting part is that this unique factorization is guaranteed

without any additional conditions. We described and analyzed three kinds of

factors occurring rarely in the longer square: inversion factors, right inversion

subfactors and left inversion subfactors. We discussed how such rare factors

can be used to constraint the sizes of any possible third square starting in

proximity of the start of the double square. The right and left inversion

subfactors provide stronger constraint in comparison to the inversion factors

due to their length that is half of the length of the inversion factors. The right

and left inversion subfactors were discovered and analyzed exactly for this

stronger constraint for the purpose of proving the New Periodicity Lemma.

A stronger version of the New Periodicity Lemma was formulated with
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a significantly weaker assumption using the canonical factorization and the

right and left inversion subfactors. The range of possible starts for ”forbid-

den” squares was enlarged without any additional constraints. We also gave a

much simpler proof of the generalized New Periodicity Lemma in comparison

to the proof of the original New Peridocity Lemma.

The canonical factorization and the inversion factors were applied to prove

a stronger version of the Three Squares Lemma. In order to guarantee the

conclusion of the original Three Squares Lemma, our generalization only

needs one of the three squares to be primitive-rooted when the constraints of

length are satisfied, while the original lemma requires the shortest square’s

root to be primitive.

The future work and research directions will focus on strengthening the

ability of the rare factors to constrain the possible positions where the third

square can occur in a balanced double square. This will require discovering

some shorter factors that occur rarely in the double square. With shorter

rare factors, both the New Periodicity Lemma and the Three Squares Lemma

could be generalized and extended further. Since the rare factors were es-

sential to proving the best-to-date upper bound of 11n/6 for the number of

distinct squares in a string of length n, it is quite promising that shorter rare

factors will further improve this upper bound.
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