A d-step Approach for Distinct Squares in Strings

Mei Jiang
Joint work with Antoine Deza and Frantisek Franek

Department of Computing and Software
McMaster University

LSD & LAW, Feb 2011
Outline

1. Introduction
2. \((d, n - d)\) Table
3. Conjecture Reformulations
4. Relatively Short Square-Maximal Strings Structure
5. Conclusions
Outline

1 Introduction

2 \((d, n - d)\) Table

3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions
In 1998 Fraenkel and Simpson showed the number of distinct squares in a string of length n is bounded from above by $2n$ and gave a lower bound asymptotically approaching n from below; for primitively rooted squares, they showed that an upper bound of $n-o(n)$ is valid for infinitely many values of n.

In 2005 Ilie provided a simpler proof of Fraenkel and Simpson’s main lemma and slightly improved the upper bound to $2n-\Theta(\log n)$ in 2007.

It is believed, that the number of distinct squares is bounded by the length of the string.
d-step Approach

- We investigate the problem of distinct squares in relationship to the alphabet of the string.

- We construct a table whose rows are indexed by d and columns are indexed by $n - d$ with entries of $\sigma_d(n)$.

- We conjecture that the upper bound for the maximum number of primitively rooted distinct squares is $n - d$.

- d-step approach was inspired by the techniques used for investigating the Hirsch bound for the maximum possible diameter over all d-dimensional polytopes with n facets.
Basic Notation

- A **square** is a repetition with power of 2, **distinct squares** means only the types of the squares are counted, **primitively rooted distinct squares** means the generator itself is not a repetition.

- A **run**, a maximal fractional primitively rooted repetition, is formed by a maximal repetition followed by a tail.

- $s(x)$ denotes the number of primitively rooted distinct squares in a string x.

- $\sigma_d(n)$ denotes the maximum number of primitively rooted distinct squares over all strings of length n containing exactly d distinct symbols.

- A **singleton** refers to a symbol in a string that occurs exactly once, a **pair** occurs exactly twice, a **triple** occurs exactly three times, and in general an **k-tuple** (k times).
Outline

1. Introduction
2. \((d, n - d)\) Table
3. Conjecture Reformulations
4. Relatively Short Square-Maximal Strings Structure
5. Conclusions
$(d, n-d)$ Table

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>...</td>
</tr>
</tbody>
</table>

$(d, n-d)$ Table: $\sigma_d(n)$ with $1 \leq d \leq 10$ and $1 \leq n - d \leq 10$

Conjecture Reformulations

For all $n \geq d \geq 2$:

1. $\sigma_d(n) \leq \sigma_d(n+1)$
2. $\sigma_d(n) \leq \sigma_{d+1}(n+1)$
3. $\sigma_d(n) < \sigma_{d+1}(n+2)$
4. $\sigma_d(n) = \sigma_{d+1}(n+1)$ for $n \leq 2d$
5. $\sigma_d(n) \geq n-d$ for $n \leq 2d$
6. $\sigma_d(2d) - \sigma_{d-1}(2d-1) \leq 1$
Outline

1 Introduction

2 \((d, n - d)\) Table

3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions
Theorem 1

For all $n \geq d \geq 2$, $\sigma_d(n) \leq n - d \iff \sigma_d(2d) = d$ for all $d \geq 2$

Proof.

- $n < 2d$, constant under the diagonal.
- $n > 2d$, smaller or equal than the diagonal value.
Theorem 2

For all \(n \geq d \geq 2, \sigma_d(n) \leq n - d \iff \sigma_d(2d+1) - \sigma_d(2d) \leq 1 \) for all \(d \geq 2 \)

Proof.

\(d \) is the least s.t. \(\sigma_d(2d) > d \). Remove the singleton,
\[\sigma_{d-1}(2d - 1) = \sigma_d(2d). \]
\[\sigma_d(2d) - \sigma_{d-1}(2d - 2) \leq 1, \text{ and} \]
\[\sigma_{d-1}(2d-2) = d - 1. \text{ Thus} \]
\[\sigma_d(2d) \leq d. \]
Theorem 3

For all \(d \geq 2 \), if \(\sigma_d(2d+1) \leq d \), then

1. \(\sigma_d(n) \leq n - d \) for all \(n \geq d \geq 2 \)
2. \(\sigma_d(n) \leq n - d - 1 \) for all \(n > 2d \geq 4 \)

Proof.

\(\sigma_d(2d) = \sigma_d(2d+1) = d \).

\(n > 2d \), smaller than the diagonal value.
Theorem 4

For all $d \geq 2$, if $\sigma_d(2d) = \sigma_d(2d+1)$, then

1. $\sigma_d(n) \leq n-d$ for all $n \geq d \geq 2$
2. $\sigma_d(n) \leq n-d-1$ for all $n > 2d \geq 4$

Proof.

To show $\sigma_d(2d) = \sigma_d(2d+1) = d$. d is the least s.t. $\sigma_d(2d) > d$. $\sigma_d(2d) - \sigma_{d-1}(2d-1) \leq 1$, and $\sigma_{d-1}(2d-1) = d - 1$. Thus $\sigma_d(2d) \leq d$.

A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings
Outline

1. Introduction
2. \((d, n - d)\) Table
3. Conjecture Reformulations
4. Relatively Short Square-Maximal Strings Structure
5. Conclusions
We investigate the structure of square-maximal strings on the main diagonal.

- If $\sigma_d(2d) = d$ then at least one of the square maximal string is in the form of $aabbcccddeeff\ldots$
- If $\sigma_d(2d) > d$ then the square maximal string is a counterexample. We investigate its structure and draw conclusions for counterexamples with $n \leq 4d$.

![Diagram of square-maximal strings structure](image-url)
Lemma 1

Let d is the least s.t. for some x, $s(x) = \sigma_d(2d) > d$. Then x does not contain a pair.

Proof.

The pair: $x[i_0] = x[i_1] = C$.

- Occurs in only one square. Replace the first C with a new symbol \hat{C}.

 $d - 1 \geq \sigma_{d+1}(2d) \geq \sigma_d(2d) - 1$.

- Occurs in a non-trivial run $uvCwuvCw$. Remove wuv between C's.

 $d - k \geq \sigma_d(2d - k) \geq \sigma_d(2d) - k$, where $k = |w| + |u| + |v|$.
Triples

Lemma 2

Let d is the least s.t. for some x, $s(x) = \sigma_d(2d) > d$. Then x can only contain a triple $x[i_0] = x[i_1] = x[i_2] = C$ that satisfies:

1. $x[i_0]$ and $x[i_1]$ occur in a run $r_1 = u_1 v_1 C w_1 u_1 v_1 C w_1 u_1$, where $|u_1| \geq 1$,
2. $x[i_1]$ and $x[i_2]$ occur in a run $r_2 = u_2 v_2 C w_2 u_2 v_2 C w_2 u_2$, where $|u_2| \geq 1$, and where $i_1 - i_0 \neq i_2 - i_1$,
3. either $u_1 v_1$ is a proper suffix of $u_2 v_2$, or $w_2 u_2$ is a proper prefix of $w_1 u_1$.
Triples (cont.)

Proof.

\[r_1 : \quad u_1 v_1 C w_1 u_1 v_1 C w_1 u_1 \]
\[r_2 : \quad u_2 v_2 C w_2 u_2 v_2 C w_2 u_2 \]

- Show it is impossible to have only two symbols occur in a run.
- Show it is impossible to have three symbols occur in the same run.
- Show it is impossible to have both ends are “long”.
Singletons Estimation

Lemma 3

Let d is the least s.t. for some x, $s(x) = \sigma_d(2d) > d$. Then x has at least $\left\lceil \frac{2d}{3} \right\rceil$ singletons.

Proof.

Let u_1v_1 is a proper suffix of u_2v_2, $a = u_1[0]$. a occurs at least 6 times in the r_1 and r_2. We assign 5 a’s to the triple. It can be shown this assignment is mutually disjoint with others.

$r_1 : u_1v_1Cw_1u_1v_1Cw_1u_1$

$r_2 : u_2v_2Cw_2u_2v_2Cw_2u_2$

m_0: the number of triples, m_1: the number of other multiply occurring symbols (at least 4 times), m_2: the number of singletons.

\[
2d \geq 8m_0 + 4m_1 + m_2 \tag{1}
\]

\[
d \leq 2m_0 + m_1 + m_2 \tag{2}
\]

Thus, $m_2 \geq \left\lceil \frac{2d}{3} \right\rceil$
Theorem 5

For all \(n \geq d \geq 2 \), \(\sigma_d(n) \leq n - d \iff \sigma_d(4d) \leq 3d \) for all \(d \geq 2 \).

Proof.

\(d \) is the least s.t. \(\sigma_d(2d) > d \).
Remove \(\left\lceil \frac{2d}{3} \right\rceil \) singletons.
\(\sigma_{d'}(4d') \geq \sigma_d(2d) > d \) and \(3d' = d \). Thus, \(\sigma_{d'}(4d') > 3d' \).
Theorem 5 (cont.)

- We construct \((d, n-3d)\) table, the conjectured upper bound is true if all the main diagonal entries satisfies \(\sigma_d(4d) \leq 3d\).

\[
\begin{array}{cccccc}
 & 1 & 2 & 3 & 4 & \ldots & d & \ldots \\
1 & \sigma_1(4) & & & & & \\
2 & & \sigma_2(8) & & & & \\
3 & & & \sigma_3(12) & & & \\
4 & & & & \sigma_4(16) & & \\
\ldots & & & & & \ldots & & \\
d & & & & & & \sigma_d(4d) & \\
\ldots & & & & & & & \ldots \\
\end{array}
\]

- In general term, \((d, n-kd)\) table may be constructed and the conjecture is equivalent with \(\sigma_d((k + 1)d) \leq kd\) for all \(d \geq 2\) on the main diagonal.
Outline

1 Introduction

2 $(d, n-d)$ Table

3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions
Conclusions

- We exhibit the usefulness of investigating the main diagonal of $(d, n-d)$ table for tackling the conjectured upper bound.
 - To prove the conjecture by showing that the first counterexample has an impossible structure, i.e., it cannot contain an k-tuple, or if it contains an k-tuple, then it must contain another symbol with a frequency $> k$.
 - To disprove the conjecture by finding a counterexample on the diagonal.

- The Hirsch conjecture was recently disproved by Santos by exhibiting a violation on the diagonal with $d = 20$.

- Let’s remark the techniques we used for “pushing up” the main diagonal can be applicable to the verification of the conjectured upper bound.
References

THANK YOU!